Essay on Smoking

500 words essay on  smoking.

One of the most common problems we are facing in today’s world which is killing people is smoking. A lot of people pick up this habit because of stress , personal issues and more. In fact, some even begin showing it off. When someone smokes a cigarette, they not only hurt themselves but everyone around them. It has many ill-effects on the human body which we will go through in the essay on smoking.

essay on smoking

Ill-Effects of Smoking

Tobacco can have a disastrous impact on our health. Nonetheless, people consume it daily for a long period of time till it’s too late. Nearly one billion people in the whole world smoke. It is a shocking figure as that 1 billion puts millions of people at risk along with themselves.

Cigarettes have a major impact on the lungs. Around a third of all cancer cases happen due to smoking. For instance, it can affect breathing and causes shortness of breath and coughing. Further, it also increases the risk of respiratory tract infection which ultimately reduces the quality of life.

In addition to these serious health consequences, smoking impacts the well-being of a person as well. It alters the sense of smell and taste. Further, it also reduces the ability to perform physical exercises.

It also hampers your physical appearances like giving yellow teeth and aged skin. You also get a greater risk of depression or anxiety . Smoking also affects our relationship with our family, friends and colleagues.

Most importantly, it is also an expensive habit. In other words, it entails heavy financial costs. Even though some people don’t have money to get by, they waste it on cigarettes because of their addiction.

How to Quit Smoking?

There are many ways through which one can quit smoking. The first one is preparing for the day when you will quit. It is not easy to quit a habit abruptly, so set a date to give yourself time to prepare mentally.

Further, you can also use NRTs for your nicotine dependence. They can reduce your craving and withdrawal symptoms. NRTs like skin patches, chewing gums, lozenges, nasal spray and inhalers can help greatly.

Moreover, you can also consider non-nicotine medications. They require a prescription so it is essential to talk to your doctor to get access to it. Most importantly, seek behavioural support. To tackle your dependence on nicotine, it is essential to get counselling services, self-materials or more to get through this phase.

One can also try alternative therapies if they want to try them. There is no harm in trying as long as you are determined to quit smoking. For instance, filters, smoking deterrents, e-cigarettes, acupuncture, cold laser therapy, yoga and more can work for some people.

Always remember that you cannot quit smoking instantly as it will be bad for you as well. Try cutting down on it and then slowly and steadily give it up altogether.

Get the huge list of more than 500 Essay Topics and Ideas

Conclusion of the Essay on Smoking

Thus, if anyone is a slave to cigarettes, it is essential for them to understand that it is never too late to stop smoking. With the help and a good action plan, anyone can quit it for good. Moreover, the benefits will be evident within a few days of quitting.

FAQ of Essay on Smoking

Question 1: What are the effects of smoking?

Answer 1: Smoking has major effects like cancer, heart disease, stroke, lung diseases, diabetes, and more. It also increases the risk for tuberculosis, certain eye diseases, and problems with the immune system .

Question 2: Why should we avoid smoking?

Answer 2: We must avoid smoking as it can lengthen your life expectancy. Moreover, by not smoking, you decrease your risk of disease which includes lung cancer, throat cancer, heart disease, high blood pressure, and more.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

Jump to navigation

  • Inside Writing
  • Teacher's Guides
  • Student Models
  • Writing Topics
  • Minilessons
  • Shopping Cart
  • Inside Grammar
  • Grammar Adventures
  • CCSS Correlations
  • Infographics

Get a free Grammar Adventure! Choose a single Adventure and add coupon code ADVENTURE during checkout. (All-Adventure licenses aren’t included.)

Sign up or login to use the bookmarking feature.

Smoking in Restaurants

Assessment model print, strong persuasive essay.

A middle school student wrote this persuasive essay to argue for banning smoking in restaurants in her state.

Title: Smoking in Restaurants

Level: Grade 6, Grade 7, Grade 8

Mode: Persuasive Writing

Form: Persuasive Essay

Completed Rubric: Smoking in Restaurants Rubric

Blank Rubric: Persuasive (Argument) Rubric

View related assessment models:

Student Model

Picture this: you’re just about to bite into your delicious Caesar salad at a fancy downtown restaurant when all of a sudden a thick cloud of smelly white smoke drifts in front of your face, obscuring your vision and sending you into fits of coughing. Eyes watering, you fan the smoke away from your face only to discover that the horrible smell from this cloud has now robbed you of your appetite. You drop your fork into your salad bowl and motion for your check. Your meal is ruined.

For too long, nonsmoking diners in our state have had to breathe in contaminated air from smokers. Smoking should be prohibited by law in all restaurants.

Breathing in secondhand smoke is physically just as bad as breathing in smoke firsthand. Every year, 37,000 nonsmoking people die from heart disease. These deaths might have been prevented if they had not been subjected to secondhand smoke.

A 1992 study by the U.S. Environmental Protection Agency and a 2006 Surgeon General’s study concluded that secondhand smoke causes 3,000 heart attacks a year. These same reports also blamed second-hand smoke for 20% of asthma attacks in children.

These frightening statistics aside, meals just aren’t as enjoyable when someone is blowing smoke in your face. Restaurants lose valuable customers when smoking is allowed because so many people today do not want smoke in the air while they are dining. This could be stopped if smoking were legally prohibited in restaurants.

When adults smoke in restaurants, not only is it bad for their health and the health of others around them, they are also setting a terrible example for kids. By example, they are encouraging kids to smoke, too. If smoking were prohibited in all restaurants, it would help kids not get hooked on smoking.

Everyone has the right to breathe in clean air when they dine at a restaurant. To ensure that all diners can enjoy a smoke-free meal, smoking must be banned from all restaurants. Write to your assembly person and encourage him or her to support a law in our state banning smoking in restaurants. It’s the right thing, and the safe thing, to do.

smoking in restaurants essay

Teacher Support:

Click to find out more about this resource.

Standards Correlations:

The State Standards provide a way to evaluate your students' performance.

  • 110.22.b.5.F
  • 110.22.b.8.D
  • LAFS.6.RI.1.1
  • 110.22.b.8.D.i
  • 110.22.b.6.D
  • LAFS.6.RI.1.2
  • 110.22.b.8.E
  • LAFS.6.RI.3.8
  • 110.22.b.10
  • 110.22.b.11.C
  • LAFS.6.W.1.1
  • 110.23.b.10
  • 110.23.b.11.C
  • LAFS.7.W.1.1
  • 110.23.b.5.G
  • 110.23.b.6.D
  • 110.23.b.8.D
  • LAFS.7.RI.1.2
  • 110.23.b.8.E
  • LAFS.7.RI.3.8
  • 110.23.b.11.B
  • LAFS.7.W.1.2
  • 110.24.b.6.C
  • 110.24.b.8.D
  • 110.24.b.8.E
  • LAFS.8.RI.1.1
  • 110.24.b.6.D
  • 110.24.b.8.D.i
  • 110.24.b.8.E.i
  • LAFS.8.RI.1.2
  • 110.24.b.6.I
  • 110.24.b.6.J
  • LAFS.8.RI.3.8
  • 110.24.b.10
  • 110.24.b.11.C
  • LAFS.8.W.1.1

© 2024 Thoughtful Learning. Copying is permitted.

k12.thoughtfullearning.com

National Academies Press: OpenBook

Secondhand Smoke Exposure and Cardiovascular Effects: Making Sense of the Evidence (2010)

Chapter: 8 conclusions and recommendations, 8 conclusions and recommendations.

In this report, the committee has examined three relationships in response to its charge (see Box 8-1 for specific questions):

The association between secondhand-smoke exposure and cardiovascular disease, especially coronary heart disease and not stroke (Question 1).

The association between secondhand-smoke exposure and acute coronary events (Questions 2, 3, and 5).

The association between smoking bans and acute coronary events (Questions 4, 5, 6, 7, and 8).

This chapter summarizes the committee’s review of information relevant to those relationships; presents its findings, conclusions, and recommendations on the basis of the weight of evidence; and presents its responses to the specific questions that it was asked in its task.

SUMMARY OF REPORT

Exposure assessment.

To determine the effect of changes in exposure to secondhand smoke it is necessary to quantify changes in epidemiologic studies. Airborne measures and biomarkers of exposure to secondhand smoke are available; they are complementary and provide different information (see Chapter 2 ). Biomarkers (such as cotinine, the major proximate metabolite of nicotine) in-

tegrate all sources of exposure and inhalation rates, but cannot identify the place where secondhand-smoke exposure occurred and, because of a short half-life they reflect only recent exposures. Airborne measures of exposure can demonstrate the contribution of different sources or venues of exposure and can be used to measure changes in secondhand-smoke concentrations at individual venues, but they do not reflect the true dose. Airborne concentration of nicotine is a specific tracer for secondhand smoke. Particulate matter (PM) can also be used as an indicator of secondhand-smoke exposure, but because there are other sources of PM it is a less specific tracer than nicotine. The concentration of cotinine in serum, saliva, or urine is a specific indicator of integrated exposure to secondhand smoke.

Although in most of the smoking-ban studies the magnitude, frequency, and duration of exposures that occurred before a ban are not known, monitoring studies demonstrate that exposure to secondhand smoke is dramatically reduced in places that are covered by bans. Airborne nicotine

and PM concentrations in regulated venues such as workplaces, bars, and restaurants decreased by more than 80% in most studies; serum, salivary, or urinary cotinine concentrations decreased by 50% or more in most studies, probably reflecting continuing exposures in unregulated venues (for example, in homes and cars).

Pathophysiology

The pathophysiology of the induction of cardiovascular disease by cigarette-smoking and secondhand-smoke exposure is complex and undoubtedly involves multiple agents. Many chemicals in secondhand smoke have been shown to exert cardiovascular toxicity (see Table 3-1 ), and both acute and chronic effects of these chemicals have been identified. Experimental studies in humans, animals, and cell cultures have demonstrated effects of secondhand smoke, its components (such as PM, acrolein, polycyclic

aromatic hydrocarbons [PAHs], and metals), or both on the cardiovascular system (see Figure 3-1 for summary). Those studies have yielded sufficient evidence to support an inference that acute exposure to secondhand smoke induces endothelial dysfunction, increases thrombosis, causes inflammation, and potentially affects plaque stability adversely. Those effects appear at concentrations expected to be experienced by people exposed to secondhand smoke.

Data from animal studies also support a dose–response relationship between secondhand-smoke exposure and cardiovascular effects (see Chapter 3 ). The relationship is consistent with the understanding of the pathophysiology of coronary heart disease and the effects of secondhand smoke on humans, including chamber studies. The association comports with known associations between PM, a major constituent of secondhand smoke, and coronary heart disease.

Overall, the pathophysiologic data indicate that it is biologically plausible for secondhand-smoke exposure to have cardiovascular effects, such as effects that lead to cardiovascular disease and acute myocardial infarction (MI). The exact mechanisms by which such effects occur, however, remain to be elucidated.

Smoking-Ban Background

Characteristics of smoking bans can heavily influence their consequences. Interpretation of the results of epidemiologic studies that involve smoking bans must account for information on the bans and their enforcement.

Secondhand smoke should have been measured before and after implementation of a ban, and locations with and without bans should have been compared. Studies that include self-reported assessments of exposure to secondhand smoke cannot necessarily be compared with each other unless the survey instruments (such as interviews) were similar.

The comparability of the time and length of followup of the studies should be assessed. For example, the impact of a ban in one area may differ from the impact of a ban in another solely because the observation times were different and other activities may have occurred during the same periods. In comparing studies, it may be impossible to separate contextual factors associated with ban legislation—such as public comment periods, information announcing the ban, and notices about the impending changes—from the impact of the ban itself. The committee therefore included such contextual factors in drawing conclusions about the effects of a ban.

Interpretation needs to consider the timeframes in the epidemiologic evidence, for example, the time from onset of a smoking ban to the mea-

surement of incidence of a disease, the timing and nature of enforcement, and the time until changes in cardiovascular-event rates were observed in people who had various baseline risks. Interpretation should account for the extent to which studies assessed possible alternative causes of decreases in hospitalizations for coronary events, including changes in health-care availability and in the standard of practice in cardiac care, such as new diagnostic criteria for acute MI during the period of study. The latter is especially important in making before–after comparisons in the absence of a comparison geographic area in which no ban has been implemented.

When designing and analyzing future studies, researchers should examine the time between the implementation of a smoking ban and changes in rates of hospital admission or cardiac death. Future studies could evaluate whether decreases in admissions are transitory, sustained, or increasing, and ideally they would include information on individual subjects, including prior history of cardiac disease, to answer the questions posed to the committee.

Epidemiologic Studies

Cardiovascular disease is a major public-health concern. The results of dozens of epidemiologic studies of both case–control and cohort design carried out in multiple populations consistently indicate about a 25–30% increase in risk of coronary heart disease from exposure to secondhand smoke (see Chapter 4 ). Epidemiologic studies using serum cotinine concentration as a biomarker of overall exposure to secondhand smoke indicated that the relative risk (RR) of coronary heart disease associated with secondhand smoke is even greater than those estimates. The excess risk is unlikely to be explained by misclassification bias, uncontrolled-for confounding effects, or publication bias. Although few studies have addressed the risk of coronary heart disease posed by secondhand-smoke exposure in the workplace, there is no biologically plausible reason to suppose that the effect of secondhand-smoke exposure at work or in a public building differs from the effect of exposure in the home environment. Epidemiologic studies demonstrate a dose–response relationship between chronic secondhand-smoke exposure as assessed by self-reports of exposure (He et al., 1999) and as assessed by biomarkers (cotinine) and long-term risk of coronary heart disease (Whincup et al., 2004). Dose–response curves show a steep initial rise in risk when going from negligible to low exposure followed by a gradual increase with increasing exposure.

The INTERHEART study, a large case–control study of cases of first acute MI, showed that exposure to secondhand smoke increased the risk of nonfatal acute MI in a graded manner (Teo et al., 2006).

Eleven key epidemiologic studies evaluated the effects of eight smok-

ing bans on the incidence of acute coronary events (see Table 8-1 and Chapter 6 ). The results of those studies show remarkable consistency: all showed decreases in the rate of acute MIs after the implementation of smoking bans (Barone-Adesi et al., 2006; Bartecchi et al., 2006; CDC, 2009; Cesaroni et al., 2008; Juster et al., 2007; Khuder et al., 2007; Lemstra et al., 2008; Pell et al., 2008; Sargent et al., 2004; Seo and Torabi, 2007; Vasselli et al., 2008). Two of the studies (Pell et al., 2008; Seo and Torabi, 2007) examined rates of hospitalization for acute coronary events after the implementation of smoking bans and provided direct evidence of the relationship of secondhand-smoke exposure to acute coronary events by presenting results in nonsmokers.

The decreases in acute MIs in the 11 studies ranged from about 6 to 47%, depending on characteristics of the study, including the method of statistical analysis. The consistency in the direction of change gave the committee confidence that smoking bans result in a decrease in the rate of acute MI. The studies took advantage of bans as “natural experiments” to look at questions about the effects of bans, and indirectly of a decrease in secondhand-smoke exposure, on the incidence of acute cardiac events. As discussed in Assessing the Health Impact of Air Quality Regulations: Concepts and Methods for Accountability Research (HEI Accountability Working Group, 2003) in the context of air-pollution regulations, studies of interventions constitute a more definitive approach than other epidemiologic studies to determining whether regulations result in health benefits. All the studies are relevant and informative with respect to the questions posed to the committee, and overall they support an association between smoking bans and a decrease in acute cardiovascular events. The studies have inherent limitations related to their nature, but they directly evaluated the effects of an intervention (a smoking ban, including any concomitant activities) on a health outcome of interest (acute coronary events).

The committee could not determine the magnitude of effect with any reasonable degree of certainty on the basis of those studies. The variability in study design, implementation, and analysis was so large that the committee concluded that it could not conduct a meta-analysis or combine the information from the studies to calculate a point estimate of the effect. In particular, the committee was unable to determine the overall portion of the effect attributable to decreased smoking by smokers as opposed to decreased exposure of nonsmokers to secondhand smoke because of a lack of information on smoking status in nine of the studies (Barone-Adesi et al., 2006; Bartecchi et al., 2006; CDC, 2009; Cesaroni et al., 2008; Juster et al., 2007; Khuder et al., 2007; Lemstra et al., 2008; Sargent et al., 2004; Seo and Torabi, 2007; Vasselli et al., 2008). The results of the studies are consistent with the findings of the pathophysiologic studies discussed in Chapter 3 and the data on PM discussed in Chapters 3 and 7 . At the population level,

results of the key intervention studies reviewed by the committee are for the most part consistent with a decrease in risk as early as a month following reductions in secondhand-smoke exposure; however, given the variability in the studies and the lack of data on the precise timing of interventions, the smoking-ban studies do not provide adequate information on the time it takes to see decreases in acute MIs.

Plausibility of Effect

The committee considered both the biologic plausibility of a causal relationship between a decrease in secondhand-smoke exposure and a decrease in the incidence of acute MI and the plausibility of the magnitude of the effect seen in the key epidemiologic studies after implementation of smoking bans.

The experimental data reviewed in Chapter 3 demonstrate that several components of secondhand smoke, as well as secondhand smoke itself, exert substantial cardiovascular toxicity. The toxic effects include the induction of endothelial dysfunction, an increase in thrombosis, increased inflammation, and possible reductions in plaque stability. The data provide evidence that it is biologically plausible for secondhand smoke to be a potential causative trigger of acute coronary events. The risk of acute coronary events is likely to be increased if a person has preexisting heart disease. The association comports with findings on air-pollution components, such as diesel exhaust (Mills et al., 2007) and PM (Bhatnagar, 2006).

As a “reality check” on the potential effects of changes in secondhand-smoke exposure, the committee estimated the decrease in risk of cardiovascular disease and specifically heart failure that would be expected on the basis of the risk effects of changes in airborne PM concentrations after implementation of smoking bans seen in the PM literature. The PM in cigarette smoke is not identical with that in air pollution, and the committee did not attempt to estimate the risk attributable to secondhand-smoke exposure through the PM risk estimates but rather found this a useful exercise to see whether the decreases seen in the epidemiologic literature are reasonable, given data on other air pollutants that have some common characteristics. The committee’s estimates on the basis of the PM literature support the possibility that changes in secondhand-smoke exposure after implementation of a smoking ban can have a substantial effect on hospital admissions for heart failure and cardiovascular disease.

SUMMARY OF OVERALL WEIGHT OF EVIDENCE

The committee examined three relationships—of secondhand-smoke exposure and cardiovascular disease, of secondhand-smoke exposure and

TABLE 8-1 Summary of Key Studies (Studies Listed by Smoking-Ban Region in Order of Publication)

acute coronary events, and of smoking bans and acute coronary events. The committee used the criteria of causation described in Smoking and Health: Report of the Advisory Committee of the Surgeon General of the Public Health Service (U.S. Public Health Service, 1964) in drawing conclusions regarding those relationships. The criteria are often referred to as the Bradford Hill criteria because they were, as stated by Hamill (1997), “later expanded and refined by A. B. Hill” (Hill, 1965). Table 8-2 summarizes the available evidence on secondhand-smoke exposure and coronary events in terms of the Bradford Hill criteria.

Secondhand-Smoke Exposure and Cardiovascular Disease

The results of both case–control and cohort studies carried out in multiple populations consistently indicate exposure to secondhand smoke causes about a 25–30% increase in the risk of coronary heart disease; results of some studies indicate a dose–response relationship. Data from animal studies support the dose–response relationship (see Chapter 3 ). Data from experimental studies of animals and cells and from intentional human-dosing studies indicate that a relationship between secondhand-smoke exposure and coronary heart disease is biologically plausible and consistent with understanding of the pathophysiology of coronary heart disease.

Taking all that evidence together, the committee concurs with the conclusions in the 2006 surgeon general’s report (HHS, 2006) that “the evidence is sufficient to infer a causal relationship between exposure to secondhand smoke and increased risks of coronary heart disease morbidity and mortality among both men and women.” Although the committee found strong and consistent evidence of the existence of a positive association between chronic exposure to secondhand smoke and coronary heart disease, determining the magnitude of the risk (the number of cases that are attributable to secondhand-smoke exposure) proved challenging, and the committee has not done it.

Secondhand-Smoke Exposure and Acute Coronary Events

Two of the epidemiologic studies reviewed by the committee that examine rates of hospitalization for acute coronary events after implementation of smoking bans provide direct evidence related to secondhand smoke exposures. The studies either reported events in nonsmokers only (Monroe, Indiana) (Seo and Torabi, 2007) or analyzed nonsmokers and smokers separately on the basis of serum cotinine concentration (Scotland) (Pell et al., 2008). Both studies showed reductions in the RR of acute coronary events in nonsmokers when secondhand-smoke exposure was decreased after implementation of the bans; this indicates an association between a

decrease in exposure to secondhand smoke and a decrease in risk of acute coronary events. Because of differences between and limitations of the two studies (such as in population, population size, and analysis), they do not provide strong sufficient evidence to determine the magnitude of the decrease in RR.

The effect seen after implementation of smoking bans is consistent with data from the INTERHEART study, a case–control study of 15,152 cases of first acute MI in 262 centers in 52 countries (Teo et al., 2006). Increased exposure to secondhand smoke increased the risk of nonfatal acute MI in a graded manner, with adjusted odds ratios of 1.24 (95% confidence interval [CI], 1.17–1.32) and 1.62 (95% CI, 1.45–1.81) in the least exposed people (1–7 hours of exposure per week) and the most exposed (at least 22 hours of exposure per week), respectively. In contrast, a study using data from the Western New York Health Study collected from 1995 to 2001 found that secondhand smoke was not significantly associated with higher risk of MI (Stranges et al., 2007). That study, however, looked at lifetime cumulative exposure to secondhand smoke, a different exposure metric from that in the other studies and one that does not take into account how recent the exposure is.

The other key epidemiologic studies that looked at smoking bans provide indirect evidence of an association between secondhand-smoke exposure and acute coronary events (Barone-Adesi et al., 2006; Bartecchi et al., 2006; CDC, 2009; Cesaroni et al., 2008; Juster et al., 2007; Khuder et al., 2007; Lemstra et al., 2008; Sargent et al., 2004; Vasselli et al., 2008). Although it is not possible to separate the effect of smoking bans in reducing exposure to secondhand smoke and their effect in reducing active smoking in those studies, because they did not report individual smoking status or secondhand-smoke exposure concentrations, monitoring studies of airborne tracers 1 and biomarkers 2 of exposure to secondhand smoke have demonstrated that exposure to secondhand smoke is dramatically reduced after implementation of smoking bans. Those studies therefore provide indirect evidence that at least part of the decrease in acute coronary events seen after implementation of smoking bans could be mediated by a decrease in exposure to secondhand smoke. It is not possible to determine the differential magnitude of the effect that is attributable to changes in nonsmokers and smokers.

Experimental data show that an association between secondhand-

TABLE 8-2 Evaluation of Available Data in Terms of Bradford-Hill Criteria

smoke exposure and acute coronary events is biologically plausible (see Chapter 3 ). Experimental studies in humans, animals, and cell cultures have demonstrated short-term effects of secondhand smoke as a complex mixture or its components individually (such as oxidants, PM, acrolein, PAHs, benzene, and metals) on the cardiovascular system. There is sufficient evidence from such studies to infer that acute exposure to secondhand smoke at concentrations relevant to population exposures induces endothelial dysfunction, increases inflammation, increases thrombosis, and potentially adversely affects plaque stability. Those effects occur at magnitudes relevant to the pathogenesis of acute coronary events. Furthermore, indirect evidence obtained from studies of ambient PM supports the notion that exposure to PM present in secondhand smoke could trigger acute coronary events or induce arrhythmogenesis in a person with a vulnerable myocardium.

Taking all that evidence together, the committee concludes that there is sufficient evidence of a causal relationship between a decrease in secondhand-smoke exposure and a decrease in the risk of acute MI. Given the variability among studies and their limitations, the committee did not provide a quantitative estimate of the magnitude of the effect.

Smoking Bans and Acute Coronary Events

Nine key studies looked at the overall effect of smoking bans on the incidence of acute coronary events in the overall populations—smokers and nonsmokers—studied (Barone-Adesi et al., 2006; Bartecchi et al., 2006; CDC, 2009; Cesaroni et al., 2008; Juster et al., 2007; Khuder et al., 2007; Lemstra et al., 2008; Sargent et al., 2004; Vasselli et al., 2008). Those studies consistently show a decrease in acute MIs after implementation of smoking bans. The combination of experimental data on secondhand-smoke effects discussed above and exposure data that indicate that secondhand-smoke concentrations decrease substantially after implementation of a smoking ban provides evidence that it is biologically plausible for smoking bans to decrease the rate of acute MIs. The committee concludes that there is an association between smoking bans and a reduction in acute coronary events and, given the temporality and biologic plausibility of the effect, that the evidence is consistent with a causal relationship. Although all the studies demonstrated a positive effect of bans in reducing acute MIs, differences among the studies, including the components of the bans and other interventions that promote smoke-free environments that took place during the bans, limited the committee’s confidence in estimating the overall magnitude of the effect. There is little information on how long it would take for such an effect to be seen inasmuch as the studies have not evaluated periods shorter than a month.

DATA GAPS AND RESEARCH RECOMMENDATIONS

Studies of the effect of indoor smoking bans and secondhand-smoke exposure on acute coronary events should be designed to examine the time between an intervention and changes in the effect and to measure the magnitude of the effect. No time to effect can be postulated for individuals on the basis of the available data, and evaluation of population-based effectiveness of a smoking ban depends on societal actions that implement and enforce the ban and on actions that include smoke reduction in homes, cars, and elsewhere. The decrease in secondhand-smoke exposure does not necessarily occur suddenly—it might decline gradually or by steps. In a likely scenario, once a ban is put into place and enforced, a sharp drop in secondhand-smoke exposure might be seen immediately and followed by a slower decrease in exposure as the population becomes more educated about the health consequences of secondhand smoke and exposure becomes less socially acceptable. Future studies that examine the time from initiation of a ban to observation of an effect and that include followup after initiation of enforcement, taking the social aspects into account, would provide better information on how long it takes to see an effect of a ban. Statistical models should clearly articulate a set of assumptions and include sensitivity analyses. Studies that examine whether decreases in hospital admissions for acute coronary events are transitory or sustained would also be informative.

Many factors are likely to influence the effect of a smoking ban on the incidence and prevalence of acute coronary events in a population. They include age, sex, diet, background risk factors and environmental factors for cardiovascular disease, prevalence of smokers in the community, the underlying rate of heart disease in the community (for example, the rate in Italy versus the United States), and the social environment. Future studies should include direct observations on individuals—including their history of cardiac disease, exposure to other environmental agents, and other risk factors for cardiac events—to assess the impact of those factors on study results. Assessment of smoking status is also needed to distinguish between the effects of secondhand smoke in nonsmokers and the effects of a ban that decreases cigarette consumption or promotes smoking cessation in smokers.

Few constituents of secondhand smoke have been adequately studied for cardiotoxicity. Future research should examine the cardiotoxicity of environmental chemicals, including those in secondhand smoke, to define cardiovascular toxicity end points and establish consistent definitions and measurement standards for cardiotoxicity of environmental contaminants. Specifically, information is lacking on the cardiotoxicity of highly reactive smoke constituents, such as acrolein and other oxidants; on techniques for

quantitating those reactive components; and on the toxicity of low concentrations of benzo[ a ]pyrene, of PAHs other than benzo[a]pyrene, and of mixtures of tobacco-smoke toxicants.

Many questions remain with respect to the pathogenesis of cardiovascular disease and acute coronary events and how secondhand-smoke constituents perturb the pathophysiologic mechanisms and result in disease and death. For example, a better understanding of the factors that promote plaque rupture and how they are influenced by tobacco smoke and PM would provide insight into the mechanisms underlying the cardiovascular effects of secondhand smoke and might lead to better methods of detecting preclinical disease and preventing events.

The committee found only sparse data on the prevalence and incidence of cardiovascular disease and acute coronary events at the national level in general compared with other health end points for which there are central data registries and surveillance of all events, such as the Surveillance, Epidemiology, and End Results (SEER) Program for cancer. Although there are national databases that include acute MI patients—such as the National Registry of Myocardial Infarction (Morrow et al., 2001; Rogers et al., 1994), the Health Care Financing Administration database, and the Cooperative Cardiovascular Project (Ellerbeck et al., 1995)—and the Centers for Disease Control and Prevention’s annual National Hospital Discharge Survey and National Health Interview Survey provide some information on cardiovascular end points, these are not comprehensive or inclusive with respect to hospital participation, patient inclusion, or data capture. A national database that captures all cardiovascular end points would facilitate future epidemiologic studies by allowing the tracking of trends and identification of high-risk populations at a more granular level.

A large prospective cohort study could be very helpful in more accurately estimating the magnitude of the risk of cardiovascular disease and acute coronary events posed by secondhand-smoke exposure. It could be a new study specifically designed to assess effects of secondhand smoke or, as was done with the INTERHEART study, take advantage of existing studies—such as the Framingham Heart Study, the Multi-Ethnic Study of Atherosclerosis, the American Cancer Society’s Cancer Prevention Study-3, the European Prospective Investigation into Cancer and Nutrition study, and the Jackson Heart Study—provided that they have adequate information on individual smoking status and secondhand-smoke exposure (or the ability to measure it, for example, in adequate blood samples). If properly designed, such a study could identify subpopulations at highest risk for acute coronary events from secondhand-smoke exposure in relation to such characteristics as age and sex, and concomitant risk factors, such as obesity.

COMMITTEE RESPONSES TO SPECIFIC QUESTIONS

The committee was tasked with responding to eight specific questions. The questions and the committee’s responses are presented below.

What is the current scientific consensus on the relationship between exposure to secondhand smoke and cardiovascular disease? What is the pathophysiology? What is the strength of the relationship?

On the basis of the available studies of chronic exposure to secondhand smoke and cardiovascular disease, the committee concludes that there is scientific consensus that there is a causal relationship between secondhand-smoke exposure and cardiovascular disease. The results of a number of meta-analyses of the epidemiologic studies showed increases of 25–30% in the risk of cardiovascular disease caused by various exposures. The studies include some that use serum cotinine concentration as a biomarker of exposure and show a dose–response relationship. The pathophysiologic data are consistent with that relationship, as are the data from studies of air pollution and PM. The data in support of the relationship are consistent, but the committee could not calculate a point estimate of the magnitude of the effect (that is, the effect size) given the variable strength of the relationship, differences among studies, poor assessment of secondhand-smoke exposure, and variation in concomitant underlying risk factors.

Is there sufficient evidence to support the plausibility of a causal relation between secondhand smoke exposure and acute coronary events such as acute myocardial infarction and unstable angina? If yes, what is the pathophysiology? And what is the strength of the relationship?

The evidence reviewed by the committee is consistent with a causal relationship between secondhand-smoke exposure and acute coronary events, such as acute MI. It is unknown whether acute exposure, chronic exposure, or a combination of the two underlies the occurrence of acute coronary events, inasmuch as the duration or pattern of exposure in individuals is not known. The evidence includes the results of two key studies that have information on individual smoking status and that showed decreases in risks of acute coronary events in nonsmokers after implementation of a smoking ban. Those studies are supported by information from other smoking-ban studies (although these do not have information on individual smoking status, other exposure-assessment studies have demonstrated that secondhand-smoke exposure decreases after implementation of a smoking ban) and by the large body of literature on PM, especially PM 2.5 , a

constituent of secondhand smoke. The evidence is not yet comprehensive enough to determine a detailed mode of action for the relationship between secondhand-smoke exposure and a variety of intervening and preexisting conditions in predisposing to cardiac events. However, experimental studies have shown effects that are consistent with pathogenic factors in acute coronary events. Although the committee has confidence in the evidence of an association between chronic secondhand-smoke exposure and acute coronary events, the evidence on the magnitude of the association is less convincing, so the committee did not estimate that magnitude (that is, the effect size).

Is it biologically plausible that a relatively brief (e.g., under 1 hour) secondhand smoke exposure incident could precipitate an acute coronary event? If yes, what is known or suspected about how this risk may vary based upon absence or presence (and extent) of preexisting coronary artery disease?

There is no direct evidence that a relatively brief exposure to secondhand smoke can precipitate an acute coronary event; few published studies have addressed that question. The circumstantial evidence of such a relationship, however, is compelling. The strongest evidence comes from airpollution research, especially research on PM. Although the source of the PM can affect its toxicity, particle size in secondhand smoke is comparable with that in air pollution, and research has demonstrated a similarity between cardiovascular effects of PM and of secondhand smoke. Some studies have demonstrated rapid effects of brief secondhand-smoke exposure (for example, on platelet aggregation and endothelial function), but more research is necessary to delineate how secondhand smoke produces cardiovascular effects and the role of underlying preexisting coronary arterial disease in determining susceptibility to the effects. Given the data on PM, especially those from time-series studies, which indicate that a relatively brief exposure can precipitate an acute coronary event, and the fact that PM is a major component of secondhand smoke, the committee concludes that it is biologically plausible for a relatively brief exposure to secondhand smoke to precipitate an acute coronary event.

With respect to how the risk might vary in the presence or absence of preexisting coronary arterial disease, it is generally assumed that acute coronary events are more likely to occur in people who have some level of preexisting disease, although that underlying disease is often subclinical. There are not enough data on the presence of pre-existing coronary arterial disease in the populations studied to assess the extent to which the absence or presence of such preexisting disease affects the cardiovascular risk posed by secondhand-smoke exposure.

What is the strength of the evidence for a causal relationship between indoor smoking bans and decreased risk of acute myocardial infarction?

The key intervention studies that have evaluated the effects of indoor smoking bans consistently have shown a decreased risk of heart attack. Research has also indicated that secondhand-smoke exposure is causally related to heart attacks, that smoking bans decrease secondhand-smoke exposure, and that a relationship between secondhand-smoke exposure and acute coronary events is biologically plausible. All the relevant studies have shown an association in a direction consistent with a causal relationship (although the committee was unable to estimate the magnitude of the association), and the committee therefore concludes that the evidence is sufficient to infer a causal relationship.

What is a reasonable latency period between a decrease in secondhand smoke exposure and a decrease in risk of an acute myocardial infarction for an individual? What is a reasonable latency period between a decrease in population secondhand smoke exposure and a measurable decrease in acute myocardial infarction rates for a population?

No direct information is available on the time between a decrease in secondhand-smoke exposure and a decrease in the risk of a heart attack in an individual. Data on PM, however, have shown effects on the heart within 24 hours, and this supports a period of less than 24 hours. At the population level, results of the key intervention studies reviewed by the committee are for the most part consistent with a decrease in risk as early as a month following reductions in secondhand-smoke exposure; however, given the variability in the studies and the lack of data on the precise timing of interventions, the smoking-ban studies do not provide adequate information on the time it takes to see decreases in heart attacks.

What are the strengths and weaknesses of published population-based studies on the risk of acute myocardial infarction following the institution of comprehensive indoor smoking bans? In light of published studies’ strengths and weaknesses, how much confidence is warranted in reported effect size estimates?

Some of the weaknesses of the published population-based studies of the risk of MI after implementation of smoking bans are

Limitations associated with an open study population and, in some cases, with the use of a small sample.

Concurrent interventions that reduce the observed effect of a smoking ban.

Lack of exposure-assessment criteria and measurements.

Lack of information collected on the time between the cessation of exposure to secondhand smoke and changes in disease rates.

Differences between control and intervention groups.

Nonexperimental design of studies (by necessity).

Lack of assessment of the sensitivity of results to the assumptions made in the statistical analysis.

The different studies had different strengths and weaknesses in relation to the assessment of the effects of smoking bans. For example, the Scottish study had such strengths as prospective design and serum cotinine measurements. The Saskatoon study had the advantage of comprehensive hospital records, and the Monroe County study excluded smokers. The population-based studies of the risk of heart attack after the institution of comprehensive smoking bans were consistent in showing an association between the smoking bans and a decrease in the risk of acute coronary events, and this strengthened the committee’s confidence in the existence of the association. However, because of the weaknesses discussed above and the variability among the studies, the committee has little confidence in the magnitude of the effects and, therefore, thought it inappropriate to attempt to estimate an effect size from such disparate designs and measures.

What factors would be expected to influence the effect size? For example, population age distribution, baseline level of secondhand smoke protection among nonsmokers, and level of secondhand smoke protection provided by the smoke-free law .

A number of factors that vary among the key studies can influence effect size. Although some of the studies found different effects in different age groups, these were not consistently identified. One major factor is the size of the difference in secondhand-smoke exposure before and after implementation of a ban, which would vary and depends on: the magnitude of exposure before the ban, which is influenced by the baseline level of smoking and preexisting smoking bans or restrictions; and the magnitude of exposure after implementation of the ban, which is influenced by the extent of the ban, enforcement of and compliance with the ban, changes in social norms of smoking behaviors, and remaining exposure in areas not covered by the ban (for example, in private vehicles and homes). The baseline rate of acute coronary events or cardiovascular disease could influence the effect

size, as would the prevalence of other risk factors for acute coronary events, such as obesity, diabetes, and age.

What are the most critical research gaps that should be addressed to improve our understanding of the impact of indoor air policies on acute coronary events? What studies should be performed to address these gaps?

The committee identified the following gaps and research needs as those most critical for improving understanding of the effect of indoor-air policies on acute coronary events:

The committee found a relative paucity of data on environmental cardiotoxicity of secondhand smoke compared with other disease end points related to secondhand smoke, such as carcinogenicity and reproductive toxicity. Research should develop standard definitions of cardiotoxic end points in pathophysiologic studies (for example, specific results on standard assays) and a classification system for cardiotoxic agents (similar to the International Agency for Research on Cancer classification of carcinogens). Established cardiotoxicity assays for environmental exposures and consistent definitions of adverse outcomes of such tests would improve investigations of the cardiotoxicity of secondhand smoke and its components and identify potential end points for the investigation of the effects of indoor-air policies on acute coronary events.

The committee found a lack of a system for surveillance of the prevalence of cardiovascular disease and of the incidence of acute coronary events in the United States. Surveillance of incidence and prevalence trends would allow secular trends to be taken into account better and to be compared among different populations to establish the effects of indoor-air policies. Although some national databases and surveys include cardiovascular end points, a national database that tracks hospital admission rates and deaths from acute coronary events, similar to the SEER database for cancer, would improve epidemiologic studies.

The committee found a lack of understanding of a mechanism that leads to plaque rupture and from that to an acute coronary event and of how secondhand smoke affects that process. Additional research is necessary to develop reliable biomarkers of early effects on plaque vulnerability to rupture and to improve the design of pathophysiologic studies of secondhand smoke that examine effects of exposure on plaque stability.

All 11 key studies reviewed by the committee have strengths and limitations due to their study design, and none was designed to test the hypothesis that secondhand-smoke exposure causes cardiovascular disease or acute coronary events. Because of those limitations and the consequent variability in results, the committee did not have enough information to estimate the magnitude of the decrease in cardiovascular risk due to smoking bans or to a decrease in secondhand-smoke exposure. A large, well-designed study could permit estimation of the magnitude of the effect. An ideal study would be prospective; would have individual-level data on smoking status; would account for potential confounders, including other risk factors for cardiovascular events (such as obesity and age), would have biomarkers of mainstream and secondhand-smoke exposures (such as blood cotinine concentrations); and would have enough cases to allow separate analyses of smokers and nonsmokers or, ideally, stratification of cases by cotinine concentrations to examine the dose–response relationship. Such a study could be specifically designed for secondhand smoke or potentially could take advantage of existing cohort studies that might have data available or attainable for investigating secondhand-smoke exposure and its cardiovascular effects, such as was done with the INTERHEART study. Existing studies that could be explored to determine their utility and applicability to questions related to secondhand smoke include the Multi-Ethnic Study of Atherosclerosis (MESA) study, the American Cancer Society’s CPS-3, the European Prospective Investigation of Cancer (EPIC), the Framingham Heart Study, and the Jackson Heart Study. Researchers should clearly articulate the assumptions used in their statistical models and include analysis of the sensitivity of results to model choice and assumptions.

Barone-Adesi, F., L. Vizzini, F. Merletti, and L. Richiardi. 2006. Short-term effects of Italian smoking regulation on rates of hospital admission for acute myocardial infarction. European Heart Journal 27(20):2468-2472.

Bartecchi, C., R. N. Alsever, C. Nevin-Woods, W. M. Thomas, R. O. Estacio, B. B. Bartelson, and M. J. Krantz. 2006. Reduction in the incidence of acute myocardial infarction associated with a citywide smoking ordinance. Circulation 114(14):1490-1496.

Bhatnagar, A. 2006. Environmental cardiology: Studying mechanistic links between pollution and heart disease. Circulation Research 99(7):692-705.

CDC (Centers for Disease Control and Prevention). 2009. Reduced hospitalizations for acute myocardial infarction after implementation of a smoke-free ordinance—city of Pueblo, Colorado, 2002–2006. MMWR—Morbidity & Mortality Weekly Report 57(51):1373-1377.

Cesaroni, G., F. Forastiere, N. Agabiti, P. Valente, P. Zuccaro, and C. A. Perucci. 2008. Effect of the Italian smoking ban on population rates of acute coronary events. Circulation 117(9):1183-1188.

Ellerbeck, E. F., S. F. Jencks, M. J. Radford, T. F. Kresowik, A. S. Craig, J. A. Gold, H. M. Krumholz, and R. A. Vogel. 1995. Quality of care for Medicare patients with acute myocardial infarction. A four-state pilot study from the cooperative cardiovascular project. JAMA 273(19):1509-1514.

Hamill, P. V. 1997. Re: “Invited commentary: Response to Science article, ‘Epidemiology faces its limits.’” American Journal of Epidemiology 146(6):527-528.

He, J., S. Vupputuri, K. Allen, M. R. Prerost, J. Hughes, and P. K. Whelton. 1999. Passive smoking and the risk of coronary heart disease--a meta-analysis of epidemiologic studies. New England Journal of Medicine 340(12):920-926.

HEI (Health Effects Institute) Accountability Working Group. 2003. Assessing the health impact of air quality regulations: Concepts and methods for accountability research. Communication 11. Boston, MA: Health Effects Institute.

HHS (U.S. Department of Health and Human Services). 2006. The health consequences of involuntary exposure to tobacco smoke: A report of the surgeon general. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Coordinating Center for Health Promotion, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health.

Hill, A. B. 1965. The environment and disease: Association or causation? Proceedings of the Royal Society of Medicine 58:295-300.

Juster, H. R., B. R. Loomis, T. M. Hinman, M. C. Farrelly, A. Hyland, U. E. Bauer, and G. S. Birkhead. 2007. Declines in hospital admissions for acute myocardial infarction in New York state after implementation of a comprehensive smoking ban. American Journal of Public Health 97(11):2035-2039.

Khuder, S. A., S. Milz, T. Jordan, J. Price, K. Silvestri, and P. Butler. 2007. The impact of a smoking ban on hospital admissions for coronary heart disease. Preventive Medicine 45(1):3-8.

Lemstra, M., C. Neudorf, and J. Opondo. 2008. Implications of a public smoking ban. Canadian Journal of Public Health 99(1):62-65.

Mills, N. L., H. Tornqvist, M. C. Gonzalez, E. Vink, S. D. Robinson, S. Soderberg, N. A. Boon, K. Donaldson, T. Sandstrom, A. Blomberg, and D. E. Newby. 2007. Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. New England Journal of Medicine 357(11):1075-1082.

Morrow, D. A., E. M. Antman, L. Parsons, J. A. de Lemos, C. P. Cannon, R. P. Giugliano, C. H. McCabe, H. V. Barron, and E. Braunwald. 2001. Application of the TIMI risk score for ST-elevation MI in the National Registry of Myocardial Infarction 3. JAMA 286(11):1356-1359.

Pell, J. P., S. Haw, S. Cobbe, D. E. Newby, A. C. H. Pell, C. Fischbacher, A. McConnachie, S. Pringle, D. Murdoch, F. Dunn, K. Oldroyd, P. Macintyre, B. O’Rourke, and W. Borland. 2008. Smoke-free legislation and hospitalizations for acute coronary syndrome. New England Journal of Medicine 359(5):482-491.

Rogers, W. J., L. J. Bowlby, N. C. Chandra, W. J. French, J. M. Gore, C. T. Lambrew, R. M. Rubison, A. J. Tiefenbrunn, and W. D. Weaver. 1994. Treatment of myocardial infarction in the United States (1990 to 1993). Observations from the National Registry of Myocardial Infarction. Circulation 90(4):2103-2114.

Sargent, R. P., R. M. Shepard, and S. A. Glantz. 2004. Reduced incidence of admissions for myocardial infarction associated with public smoking ban: Before and after study. BMJ 328(7446):977-980.

Seo, D.-C., and M. R. Torabi. 2007. Reduced admissions for acute myocardial infarction associated with a public smoking ban: Matched controlled study. Journal of Drug Education 37(3):217-226.

Stranges, S., M. Cummings, F. P. Cappuccio, and M. Travisan. 2007. Secondhand smoke exposure and cardiovascular disease. Current Cardiovascular Risk Reports 1(5):373-378.

Teo, K. K., S. Ounpuu, S. Hawken, M. R. Pandey, V. Valentin, D. Hunt, R. Diaz, W. Rashed, R. Freeman, L. Jiang, X. Zhang, S. Yusuf, and I. S. Investigators. 2006. Tobacco use and risk of myocardial infarction in 52 countries in the INTERHEART study: A case-control study. Lancet 368(9536):647-658.

U.S. Public Health Service. 1964. Smoking and health: Report of the Advisory Committee of the Surgeon General of the Public Health Service . PHS Publication No. 1103. Washington, DC.

Vasselli, S., P. Papini, D. Gaelone, L. Spizzichino, E. De Campora, R. Gnavi, C. Saitto, N. Binkin, and G. Laurendi. 2008. Reduction incidence of myocardial infarction associated with a national legislative ban on smoking. Minerva Cardioangiologica 56(2):197-203.

Whincup, P. H., J. A. Gilg, J. R. Emberson, M. J. Jarvis, C. Feyerabend, A. Bryant, M. Walker, and D. G. Cook. 2004. Passive smoking and risk of coronary heart disease and stroke: Prospective study with cotinine measurement. BMJ 329(7459):200-205.

Data suggest that exposure to secondhand smoke can result in heart disease in nonsmoking adults. Recently, progress has been made in reducing involuntary exposure to secondhand smoke through legislation banning smoking in workplaces, restaurants, and other public places. The effect of legislation to ban smoking and its effects on the cardiovascular health of nonsmoking adults, however, remains a question.

Secondhand Smoke Exposure and Cardiovascular Effects reviews available scientific literature to assess the relationship between secondhand smoke exposure and acute coronary events. The authors, experts in secondhand smoke exposure and toxicology, clinical cardiology, epidemiology, and statistics, find that there is about a 25 to 30 percent increase in the risk of coronary heart disease from exposure to secondhand smoke. Their findings agree with the 2006 Surgeon General's Report conclusion that there are increased risks of coronary heart disease morbidity and mortality among men and women exposed to secondhand smoke. However, the authors note that the evidence for determining the magnitude of the relationship between chronic secondhand smoke exposure and coronary heart disease is not very strong.

Public health professionals will rely upon Secondhand Smoke Exposure and Cardiovascular Effects for its survey of critical epidemiological studies on the effects of smoking bans and evidence of links between secondhand smoke exposure and cardiovascular events, as well as its findings and recommendations.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

235 Smoking Essay Topics & Examples

Looking for smoking essay topics? Being one of the most serious psychological and social issues, smoking is definitely worth writing about.

🏆 Best Smoking Essay Examples & Topic Ideas

🥇 good titles for smoking essay, 👍 best titles for research paper about smoking, ⭐ simple & easy health essay titles, 💡 interesting topics to write about health, ❓ essay questions about smoking.

In your essay about smoking, you might want to focus on its causes and effects or discuss why smoking is a dangerous habit. Other options are to talk about smoking prevention or to concentrate on the reasons why it is so difficult to stop smoking. Here we’ve gathered a range of catchy titles for research papers about smoking together with smoking essay examples. Get inspired with us!

Smoking is a well-known source of harm yet popular regardless, and so smoking essays should cover various aspects of the topic to identify the reasons behind the trend.

You will want to discuss the causes and effects of smoking and how they contributed to the persistent refusal of large parts of the population to abandon the habit, even if they are aware of the dangers of cigarettes. You should provide examples of how one may become addicted to tobacco and give the rationales for smokers.

You should also discuss the various consequences of cigarette use, such as lung cancer, and identify their relationship with the habit. By discussing both sides of the issue, you will be able to write an excellent essay.

Reasons why one may begin smoking, are among the most prominent smoking essay topics. It is not easy to begin to enjoy the habit, as the act of smoke inhalation can be difficult to control due to a lack of experience and unfamiliarity with the concept.

As such, people have to be convinced that the habit deserves consideration by various ideas or influences. The notion that “smoking is cool” among teenagers can contribute to the adoption of the trait, as can peer pressure.

If you can find polls and statistics on the primary factors that lead people to tweet, they will be helpful to your point. Factual data will identify the importance of each cause clearly, although you should be careful about bias.

The harmful effects of tobacco have been researched considerably more, with a large body of medical studies investigating the issue available to anyone.

Lung cancer is the foremost issue in the public mind because of the general worry associated with the condition and its often incurable nature, but smoking can lead to other severe illnesses.

Heart conditions remain a prominent consideration due to their lethal effects, and strokes or asthma deserve significant consideration, as well. Overall, smoking has few to no beneficial health effects but puts the user at risk of a variety of concerns.

As such, people should eventually quit once their health declines, but their refusal to do so deserves a separate investigation and can provide many interesting smoking essay titles.

One of the most prominent reasons why a person would continue smoking despite all the evidence of its dangers and the informational campaigns carried out to inform consumers is nicotine addiction.

The substance is capable of causing dependency, a trait that has led to numerous discussions of the lawfulness of the current state of cigarettes.

It is also among the most dangerous aspects of smoking, a fact you should mention.

Lastly, you can discuss the topics of alternatives to smoking in your smoking essay bodies, such as e-cigarettes, hookahs, and vapes, all of which still contain nicotine and can, therefore, lead to considerable harm. You may also want to discuss safe cigarette avoidance options and their issues.

Here are some additional tips for your essay:

  • Dependency is not the sole factor in cigarette consumption, and many make the choice that you should respect consciously.
  • Cite the latest medical research titles, as some past claims have been debunked and are no longer valid.
  • Mortality is not the sole indicator of the issues associated with smoking, and you should take chronic conditions into consideration.

Find smoking essay samples and other useful paper samples on IvyPanda, where we have a collection of professionally written materials!

  • Conclusion of Smoking Should Be Banned on College Campuses Essay However, it is hard to impose such a ban in some colleges because of the mixed reactions that are held by different stakeholders about the issue of smoking, and the existing campus policies which give […]
  • Should Smoking Be Banned in Public Places? Besides, smoking is an environmental hazard as much of the content in the cigarette contains chemicals and hydrocarbons that are considered to be dangerous to both life and environment.
  • How Smoking Is Harmful to Your Health The primary purpose of the present speech is to inform the audience about the detrimental effects of smoking. The first system of the human body that suffers from cigarettes is the cardiovascular system.
  • Smoking: Problems and Solutions To solve the problem, I would impose laws that restrict adults from smoking in the presence of children. In recognition of the problems that tobacco causes in the country, The Canadian government has taken steps […]
  • Causes and Effects of Smoking Some people continue smoking as a result of the psychological addiction that is associated with nicotine that is present in cigarettes.
  • Smoking Cigarette Should Be Banned Ban on tobacco smoking has resulted to a decline in the number of smokers as the world is sensitized on the consequences incurred on 31st May.
  • On Why One Should Stop Smoking Thesis and preview: today I am privileged to have your audience and I intend to talk to you about the effects of smoking, and also I propose to give a talk on how to solve […]
  • Smoking: Effects, Reasons and Solutions This presentation provides harmful health effects of smoking, reasons for smoking, and solutions to smoking. Combination therapy that engages the drug Zyban, the concurrent using of NRT and counseling of smokers under smoking cessation program […]
  • Advertisements on the Effect of Smoking Do not Smoke” the campaign was meant to discourage the act of smoking among the youngsters, and to encourage them to think beyond and see the repercussions of smoking.
  • Smoking and Its Negative Effects on Human Beings Therefore, people need to be made aware of dental and other health problems they are likely to experience as a result of smoking.
  • Smoking Among Teenagers as Highlighted in Articles The use of tobacco through smoking is a trend among adolescents and teenagers with the number of young people who involve themselves in smoking is growing each day.
  • Smoking and Youth Culture in Germany The report also assailed the Federal Government for siding the interest of the cigarette industry instead of the health of the citizens.
  • Health Promotion Plan: Smokers in Mississippi The main strategies of the training session are to reduce the number of smokers in Mississippi, conduct a training program on the dangers of smoking and work with tobacco producers.
  • Public Health Education: Anti-smoking Project The workshop initiative aimed to achieve the following objectives: To assess the issues related to smoking and tobacco use. To enhance the health advantages of clean air spaces.
  • Smoking and Its Effects on Human Body The investigators explain the effects of smoking on the breath as follows: the rapid pulse rate of smokers decreases the stroke volume during rest since the venous return is not affected and the ventricles lose […]
  • Causes and Effects of Smoking in Public The research has further indicated that the carcinogens are in higher concentrations in the second hand smoke rather than in the mainstream smoke which makes it more harmful for people to smoke publicly.
  • Smoking Habit, Its Causes and Effects Smoking is one of the factors that are considered the leading causes of several health problems in the current society. Smoking is a habit that may be easy to start, but getting out of this […]
  • “Thank You For Smoking” by Jason Reitman Film Analysis Despite the fact that by the end of the film the character changes his job, his nature remains the same: he believes himself to be born to talk and convince people.
  • Summary of “Smokers Get a Raw Deal” by Stanley Scott Lafayette explains that people who make laws and influence other people to exercise these laws are obviously at the top of the ladder and should be able to understand the difference between the harm sugar […]
  • Aspects of Anti-Smoking Advertising Thus, it is safe to say that the authors’ main and intended audience is the creators of anti-smoking public health advertisements.
  • Introducing Smoking Cessation Program: 5 A’s Intervention Plan The second problem arises in an attempt to solve the issue of the lack of counseling in the unit by referring patients to the outpatient counseling center post-hospital discharge to continue the cessation program.
  • Teenage Smoking and Solution to This Problem Overall, the attempts made by anti-smoking campaigners hardly yield any results, because they mostly focus on harmfulness of tobacco smoking and the publics’ awareness of the problem, itself, but they do not eradicate the underlying […]
  • Smoking Qualitative Research: Critical Analysis Qualitative research allows researchers to explore a wide array of dimensions of the social world, including the texture and weave of everyday life, the understandings, experiences and imaginings of our research participants, the way that […]
  • Tobacco Debates in “Thank You for Smoking” The advantage of Nick’s strategy is that it offers the consumer a role model to follow: if smoking is considered to be ‘cool’, more people, especially young ones, will try to become ‘cool’ using cigarettes.
  • The Change of my Smoking Behavior With the above understanding of my social class and peer friends, I was able to create a plan to avoid them in the instances that they were smoking.
  • Inequality and Discrimination: Impact on LGBTQ+ High School Students Consequently, the inequality and discrimination against LGBTQ + students in high school harm their mental, emotional, and physical health due to the high level of stress and abuse of various substances that it causes.
  • Factors Affecting the Success in Quitting Smoking of Smokers in West Perth, WA Australia Causing a wide array of diseases, health smoking is the second cause of death in the world. In Australia, the problem of smoking is extremely burning due to the high rates of diseases and deaths […]
  • Health Promotion for Smokers The purpose of this paper is to show the negative health complications that stem from tobacco use, more specifically coronary heart disease, and how the health belief model can help healthcare professionals emphasize the importance […]
  • Gender-Based Assessment of Cigarette Smoking Harm Thus, the following hypothesis is tested: Women are more likely than men to believe that smoking is more harmful to health.
  • Hazards of Smoking and Benefits of Cessation Prabhat Jha is the author of the article “The Hazards of Smoking and the Benefits of Cessation,” published in a not-for-profit scientific journal, eLife, in 2020.
  • The Impact of Warning Labels on Cigarette Smoking The regulations requiring tobacco companies to include warning labels are founded on the need to reduce nicotine intake, limit cigarette dependence, and mitigate the adverse effects associated with addiction to smoking.
  • Psilocybin as a Smoking Addiction Remedy Additionally, the biotech company hopes to seek approval from FDA for psilocybin-based therapy treatment as a cigarette smoking addiction long-term remedy.
  • Tobacco Smoking: The Health Outcomes Tobacco smoke passing through the upper respiratory tract irritates the membrane of the nasopharynx, and other organism parts, generating copious separation of mucus and saliva.
  • Investing Savings from Quitting Smoking: A Financial Analysis The progression of interest is approximately $50 per year, and if we assume n equal to 45 using the formula of the first n-terms of the arithmetic progression, then it comes out to about 105 […]
  • Smoking as a Community Issue: The Influence of Smoking A review of the literature shows the use of tobacco declined between 1980 and 2012, but the number of people using tobacco in the world is increasing because of the rise in the global population.
  • Smoking Public Education Campaign Assessment The major influence of the real cost campaign was to prevent the initiation of smoking among the youth and prevent the prevalence of lifelong smokers.
  • Smoking Cessation Therapy: Effectiveness of Electronic Cigarettes Based on the practical experiments, the changes in the patients’ vascular health using nicotine and electronic cigarettes are improved within one-month time period. The usage only of electronic cigarettes is efficient compared to when people […]
  • Quitting Smoking and Related Health Benefits The regeneration of the lungs will begin: the process will touch the cells called acini, from which the mucous membrane is built. Therefore, quitting the habit of smoking a person can radically change his life […]
  • Smoking and Stress Among Veterans The topic is significant to explore because of the misconception that smoking can alleviate the emotional burden of stress and anxiety when in reality, it has an exacerbating effect on emotional stress.
  • Smoking as a Predictor of Underachievement By comparing two groups smoking and non-smoking adolescents through a parametric t-test, it is possible to examine this assumption and draw conclusions based on the resulting p-value.
  • Smoking and the Pandemic in West Virginia In this case, the use of the income variable is an additional facet of the hypothesis described, allowing us to evaluate whether there is any divergence in trends between the rich and the poor.
  • Anti-Smoking Policy in Australia and the US The anti-smoking policy is to discourage people from smoking through various means and promotion of a healthy lifestyle, as well as to prevent the spread of the desire to smoke.
  • Smoking Prevalence in Bankstown, Australia The secondary objective of the project was to gather and analyze a sufficient amount of auxiliary scholarly sources on smoking cessation initiatives and smoking prevalence in Australia.
  • Drug Addiction in Teenagers: Smoking and Other Lifestyles In the first part of this assignment, the health problem of drug addiction was considered among teens and the most vulnerable group was established.
  • Anti-Smoking Communication Campaign’s Analysis Defining the target audience for an anti-smoking campaign is complicated by the different layers of adherence to the issue of the general audience of young adults.
  • Smoking as a Risk Factor for Lung Cancer Lung cancer is one of the most frequent types of the condition, and with the low recovery rates. If the problem is detected early and the malignant cells are contained to a small region, surgery […]
  • Smoking Cessation Project Implementation In addition, the review will include the strengths and weaknesses of the evidence presented in the literature while identifying gaps and limitations.
  • Smoking Cessation and Health Promotion Plan Patients addicted to tobacco are one of the major concerns of up-to-date medicine as constant nicotine intake leads to various disorders and worsens the health state and life quality of the users.
  • Maternal and Infant Health: Smoking Prevention Strategies It is known that many women know the dangers of smoking when pregnant and they always try to quit smoking to protect the lives of themselves and the child.
  • A Peer Intervention Program to Reduce Smoking Rates Among LGBTQ Therefore, the presumed results of the project are its introduction into the health care system, which will promote a healthy lifestyle and diminish the level of smoking among LGBTQ people in the SESLHD.
  • Tackling Teenage Smoking in Community The study of the problem should be comprehensive and should not be limited by the medical aspect of the issue. The study of the psychological factor is aimed at identifying the behavioral characteristics of smoking […]
  • Peer Pressure and Smoking Influence on Teenagers The study results indicate that teenagers understand the health and social implications of smoking, but peer pressure contributes to the activity’s uptake.
  • Smoking Cessation Programs Through the Wheel of Community Organizing The first step of the wheel is to listen to the community’s members and trying to understand their needs. After the organizer and the person receiving treatment make the connection, they need to understand how […]
  • Smoking: Benefits or Harms? Hundreds of smokers every day are looking for a way to get rid of the noose, which is a yoke around the neck, a cigarette.
  • The Culture of Smoking Changed in Poland In the 1980-90s, Poland faced the challenge of being a country with the highest rates of smoking, associated lung cancer, and premature mortality in the world.
  • The Stop Smoking Movement Analysis The paper discusses the ideology, objective, characteristics, context, special techniques, organization culture, target audience, media strategies, audience reaction, counter-propaganda and the effectiveness of the “Stop Smoking” Movement.”The Stop Smoking” campaign is a prevalent example of […]
  • Smoking Health Problem Assessment The effects of smoking correlate starkly with the symptoms and diseases in the nursing practice, working as evidence of the smoking’s impact on human health.
  • Integration of Smoking Cessation Into Daily Nursing Practice Generally, smoking cessation refers to a process structured to help a person to discontinue inhaling smoked substances. It can also be referred to as quitting smoking.
  • E-Cigarettes and Smoking Cessation Many people argue that e-cigarettes do not produce secondhand smoke. They believe that the e-fluids contained in such cigarettes produce vapor and not smoke.
  • Outdoor Smoking Ban in Public Areas of the Community These statistics have contributed to the widespread efforts to educate the public regarding the need to quit smoking. However, most of the chronic smokers ignore the ramifications of the habit despite the deterioration of their […]
  • Nicotine Replacement Therapy for Adult Smokers With a Psychiatric Disorder The qualitative research methodology underlines the issue of the lack of relevant findings in the field of nicotine replacement therapy in people and the necessity of treatment, especially in the early stages of implementation.
  • Smoking and Drinking: Age Factor in the US As smoking and drinking behavior were both strongly related to age, it could be the case that the observed relationship is due to the fact that older pupils were more likely to smoke and drink […]
  • Poland’s Smoking Culture From Nursing Perspective Per Kinder, the nation’s status as one of Europe’s largest tobacco producers and the overall increase in smoking across the developing nations of Central and Eastern Europe caused its massive tobacco consumption issues.
  • Smoking Cessation Clinic Analysis The main aim of this project is to establish a smoking cessation clinic that will guide smoker through the process of quitting smoking.
  • Cigarette Smoking Among Teenagers in the Baltimore Community, Maryland The paper uses the Baltimore community in Maryland as the area to focus the event of creating awareness of cigarette smoking among the teens of this community.
  • Advocating for Smoking Cessation: Health Professional Role Health professionals can contribute significantly to tobacco control in Australia and the health of the community by providing opportunities for smoking patients to quit smoking.
  • Lifestyle Management While Quitting Smoking Realistically, not all of the set goals can be achieved; this is due to laxity in implementing them and the associated difficulty in letting go of the past lifestyle.
  • Smoking in the Actuality The current use of aggressive marketing and advertising strategies has continued to support the smoking of e-cigarettes. The study has also indicated that “the use of such e-cigarettes may contribute to the normalization of smoking”.
  • Analysis of the Family Smoking Prevention and Tobacco Control Act The law ensures that the FDA has the power to tackle issues of interest to the public such as the use of tobacco by minors.
  • “50-Year Trends in Smoking-Related Mortality in the United States” by Thun et al. Thun is affiliated with the American Cancer Society, but his research interests cover several areas. Carter is affiliated with the American Cancer Society, Epidemiology Research Program.
  • Pulmonology: Emphysema Caused by Smoking The further development of emphysema in CH can lead to such complications caused by described pathological processes as pneumothorax that is associated with the air surrounding the lungs.
  • Smoking and Lung Cancer Among African Americans Primarily, the research paper provides insight on the significance of the issue to the African Americans and the community health nurses.
  • Health Promotion and Smoking Cessation I will also complete a wide range of activities in an attempt to support the agency’s goals. As well, new studies will be conducted in order to support the proposed programs.
  • Maternal Mental Health and Prenatal Smoking It was important to determine the variables that may lead to postpartum relapse or a relapse during the period of pregnancy. It is important to note that the findings are also consistent with the popular […]
  • Nursing Interventions for Smoking Cessation For instance, the authors are able to recognize the need to classify the level of intensity in respect to the intervention that is employed by nurses towards smoking cessation.
  • Smoking and Cancer in the United States In this research study, data on tobacco smoking and cancer prevalence in the United States was used to determine whether cancer in the United States is related to tobacco smoking tobacco.
  • Marketing Plan: Creating a Smoking Cessation Program for Newton Healthcare Center The fourth objective is to integrate a smoking cessation program that covers the diagnosis of smoking, counseling of smokers, and patient care system to help the smokers quit their smoking habits. The comprehensive healthcare needs […]
  • Smoking Among the Youth Population Between 12-25 Years I will use the theory to strengthen the group’s beliefs and ideas about smoking. I will inform the group about the relationship between smoking and human health.
  • Risks of Smoking Cigarettes Among Preteens Despite the good news that the number of preteen smokers has been significantly reducing since the 1990s, there is still much to be done as the effects of smoking are increasingly building an unhealthy population […]
  • Healthy People Program: Smoking Issue in Wisconsin That is why to respond to the program’s effective realization, it is important to discuss the particular features of the target population in the definite community of Wisconsin; to focus on the community-based response to […]
  • Health Campaign: Smoking in the USA and How to Reduce It That is why, the government is oriented to complete such objectives associated with the tobacco use within the nation as the reduction of tobacco use by adults and adolescents, reduction of initiation of tobacco use […]
  • Smoking Differentials Across Social Classes The author inferred her affirmations from the participant’s words and therefore came to the right conclusion; that low income workers had the least justification for smoking and therefore took on a passive approach to their […]
  • Cigarette Smoking Side Effects Nicotine is a highly venomous and addictive substance absorbed through the mucous membrane in the mouth as well as alveoli in the lungs.
  • Long-Term Effects of Smoking The difference between passive smoking and active smoking lies in the fact that, the former involves the exposure of people to environmental tobacco smoke while the latter involves people who smoke directly.
  • Smoking Cessation Program Evaluation in Dubai The most important program of this campaign is the Quit and Win campaign, which is a unique idea, launched by the DHCC and is in the form of an open contest.
  • Preterm Birth and Maternal Smoking in Pregnancy The major finding of the discussed research is that both preterm birth and maternal smoking during pregnancy contribute, although independently, to the aortic narrowing of adolescents.
  • Enforcement of Michigan’s Non-Smoking Law This paper is aimed at identifying a plan and strategy for the enforcement of the Michigan non-smoking law that has recently been signed by the governor of this state.
  • Smoking Cessation for Patients With Cardio Disorders It highlights the key role of nurses in the success of such programs and the importance of their awareness and initiative in determining prognosis.
  • Legalizing Electronic Vaping as the Means of Curbing the Rates of Smoking However, due to significantly less harmful effects that vaping produces on health and physical development, I can be considered a legitimate solution to reducing the levels of smoking, which is why it needs to be […]
  • Self-Efficacy and Smoking Urges in Homeless Individuals Pinsker et al.point out that the levels of self-efficacy and the severity of smoking urges change significantly during the smoking cessation treatment.
  • “Cigarette Smoking: An Overview” by Ellen Bailey and Nancy Sprague The authors of the article mentioned above have presented a fair argument about the effects of cigarette smoking and debate on banning the production and use of tobacco in America.
  • “The Smoking Plant” Project: Artist Statement It is the case when the art is used to pass the important message to the observer. The live cigarette may symbolize the smokers while the plant is used to denote those who do not […]
  • Dangers of Smoking While Pregnant In this respect, T-test results show that mean birthweight of baby of the non-smoking mother is 3647 grams, while the birthweight of smoking mother is 3373 grams. Results show that gestation value and smoking habit […]
  • The Cultural Differences of the Tobacco Smoking The Middle East culture is connected to the hookah, the Native American cultures use pipes, and the Canadian culture is linked to cigarettes.
  • Ban on Smoking in Enclosed Public Places in Scotland The theory of externality explains the benefit or cost incurred by a third party who was not a party to the reasoning behind the benefit or cost. This will also lead to offer of a […]
  • How Smoking Cigarettes Effects Your Health Cigarette smoking largely aggravates the condition of the heart and the lung. In addition, the presence of nicotine makes the blood to be sticky and thick leading to damage to the lining of the blood […]
  • Alcohol and Smoking Abuse: Negative Physical and Mental Effects The following is a range of effects of heavy alcohol intake as shown by Lacoste, they include: Neuropsychiatric or neurological impairment, cardiovascular, disease, liver disease, and neoplasm that is malevolent.
  • Smoking Prohibition: Local Issues, Personal Views This is due to the weakening of blood vessels in the penis. For example, death rate due to smoking is higher in Kentucky than in other parts of the country.
  • Smoking During Pregnancy Issues Three things to be learned from the research are the impact of smoking on a woman, possible dangers and complications and the importance of smoking cessation interventions.
  • The Smoking Problem: Mortality, Control, and Prevention The article presents smoking as one of the central problems for many countries throughout the world; the most shocking are the figures related to smoking rate among students. Summary: The article is dedicated to the […]
  • Tobacco Smoking: Bootleggers and Baptists Legislation or Regulation The issue is based on the fact that tobacco smoking also reduces the quality of life and ruins the body in numerous ways.
  • Ban Smoking in Cars Out of this need, several regulations have been put in place to ensure children’s safety in vehicles is guaranteed; thus, protection from second-hand smoke is an obvious measure that is directed towards the overall safety […]
  • Smoking: Causes and Effects Considering the peculiarities of a habit and of a disease, smoking can be considered as a habit rather than a disease.
  • Smoking Behavior Under Clinical Observation The physiological aspect that influences smokers and is perceived as the immediate effect of smoking can be summarized as follows: Within ten seconds of the first inhalation, nicotine, a potent alkaloid, passes into the bloodstream, […]
  • Smoking and Its Effect on the Brain Since the output of the brain is behavior and thoughts, dysfunction of the brain may result in highly complex behavioral symptoms. The work of neurons is to transmit information and coordinate messengers in the brain […]
  • Smoking Causes and Plausible Arguments In writing on the cause and effect of smoking we will examine the issue from the point of view of temporal precedence, covariation of the cause and effect and the explanations in regard to no […]
  • Post Smoking Cessation Weight Gain The aim of this paper is to present, in brief, the correlation between smoking cessation and weigh gain from biological and psychological viewpoints.
  • Marketing a Smoking Cessation Program In the case of the smoking cessation program, the target group is made up of smokers who can be further subdivided into segments such as heavy, medium, and light smokers.
  • Smoking Cessation for Ages 15-30 The Encyclopedia of Surgery defines the term “Smoking Cessation” as an effort to “quit smoking” or “withdrawal from smoking”. I aim to discuss the importance of the issue by highlighting the most recent statistics as […]
  • Motivational Interviewing as a Smoking Cessation Intervention for Patients With Cancer The dependent variable is the cessation of smoking in 3 months of the interventions. The study is based on the author’s belief that cessation of smoking influences cancer-treated patients by improving the efficacy of treatment.
  • Media Effects on Teen Smoking But that is not how an adult human brain works, let alone the young and impressionable minds of teenagers, usually the ads targeted at the youth always play upon elements that are familiar and appealing […]
  • “Passive Smoking Greater Health Hazard: Nimhans” by Stephen David The article focuses on analyzing the findings of the study and compares them to the reactions to the ban on public smoking.
  • Partnership in Working About Smoking and Tobacco Use The study related to smoking and tobacco use, which is one of the problematic areas in terms of the health of the population.
  • Cigar Smoking and Relation to Disease The article “Effect of cigar smoking on the risk of cardiovascular disease, chronic obstructive pulmonary disease and cancer in Men” by Iribarren et al.is a longitudinal study of cigar smokers and the impact of cigar […]
  • Quitting Smoking: Motivation and Brain As these are some of the observed motivations for smoking, quitting smoking is actually very easy in the sense that you just have to set your mind on quitting smoking.
  • Health Effects of Tobacco Smoking in Hispanic Men The Health Effects of Tobacco Smoking can be attributed to active tobacco smoking rather than inhalation of tobacco smoke from environment and passive smoking.
  • Smoking in Adolescents: A New Threat to the Society Of the newer concerns about the risks of smoking and the increase in its prevalence, the most disturbing is the increase in the incidences of smoking among the adolescents around the world.
  • The Importance of Nurses in Smoking-Cessation Programs When a patient is admitted to the hospital, the nursing staff has the best opportunity to assist them in quitting in part because of the inability to smoke in the hospital combined with the educational […]
  • New Jersey Legislation on Smoking The advantages and disadvantages of the legislation were discussed in this case because of the complexity of the topic at hand as well as the potential effects of the solution on the sphere of public […]
  • Environmental Health: Tabaco Smoking and an Increased Concentration of Carbon Monoxide The small size of the town, which is around 225000 people, is one of the reasons for high statistics in diseases of heart rate.
  • Advanced Pharmacology: Birth Control for Smokers The rationale for IUD is the possibility to control birth without the partner’s participation and the necessity to visit a doctor just once for the device to be implanted.
  • Legislation Reform of Public Smoking Therefore, the benefit of the bill is that the health hazard will be decreased using banning smoking in public parks and beaches.
  • Female Smokers Study: Inferential Statistics Article The article “Differential Effects of a Body Image Exposure Session on Smoking Urge between Physically Active and Sedentary Female Smokers” deepens the behavioral mechanisms that correlate urge to smoke, body image, and physical activity among […]
  • Smoking Bans: Protecting the Public and the Children of Smokers The purpose of the article is to show why smoking bans aim at protecting the public and the children of smokers.
  • Clinical Effects of Cigarette Smoking Smoking is a practice that should be avoided or controlled rigorously since it is a risk factor for diseases such as cancer, affects the health outcomes of direct and passive cigarette users, children, and pregnant […]
  • Public Health and Smoking Prevention Smoking among adults over 18 years old is a public health issue that requires intervention due to statistical evidence of its effects over the past decades.
  • Smoking in the US: Statistics and Healthcare Costs According to the Centers for Disease Control and Prevention, tobacco smoking is the greatest preventable cause of death in the US.
  • Smoking Should Be Banned Internationally The questions refer to the knowledge concerning the consequences of smoking and the opinions on smoking bans. 80 % of respondents agree that smoking is among the leading causes of death and 63, 3 % […]
  • Microeconomics: Cigarette Taxes and Public Smoking Ban The problem of passive smoking will be minimized when the number of smokers decreases. It is agreeable that the meager incomes of such families will be used to purchase cigarettes.
  • Alcohol and Smoking Impact on Cancer Risk The research question is to determine the quantity of the impact that different levels of alcohol ingestion combined with smoking behavioral patterns make on men and women in terms of the risks of cancer.
  • Teenagers Motivated to Smoking While the rest of the factors also matter much in the process of shaping the habit of smoking, it is the necessity to mimic the company members, the leader, or any other authority that defines […]
  • Indoor Smoking Restriction Effects at the Workplace Regrettably, they have neglected research on the effect of the legislation on the employees and employers. In this research, the target population will be the employees and employers of various companies.
  • Hypnotherapy Session for Smoking Cessation When I reached the age of sixty, I realized that I no longer wanted to be a smoker who was unable to take control of one’s lifestyle.
  • Stopping Tobacco Smoking: Lifestyle Management Plan In addition, to set objective goals, I have learned that undertaking my plan with reference to the modifying behaviour is essential for the achievement of the intended goals. The main intention of the plan is […]
  • Smoking Epidemiology Among High School Students In this way, with the help of a cross-sectional study, professionals can minimalize the risk of students being afraid to reveal the fact that they smoke. In this way, the number of students who smoke […]
  • Social Marketing: The Truth Anti-Smoking Campaign The agreement of November 1998 between 46 states, five territories of the United States, the District of Columbia, and representatives of the tobacco industry gave start to the introduction of the Truth campaign.
  • Vancouver Coastal Health Smoking Cessation Program The present paper provides an evaluation of the Vancouver Coastal Health smoking cessation program from the viewpoint of the social cognitive theory and the theory of planned behavior.
  • Smoking Experience and Hidden Dangers When my best college friend Jane started smoking, my eyes opened on the complex nature of the problem and on the multiple negative effects of smoking both on the smoker and on the surrounding society.
  • South Illinois University’s Smoking Ban Benefits The purpose of this letter is to assess the possible benefits of the plan and provide an analysis of the costs and consequences of the smoking ban introduction.
  • Smoking Cessation in Patients With COPD The strategy of assessing these papers to determine their usefulness in EBP should include these characteristics, the overall quality of the findings, and their applicability in a particular situation. The following article is a study […]
  • Smoking Bans: Preventive Measures There have been several public smoking bans that have proved to be promising since the issue of smoking prohibits smoking in all public places. This means it is a way of reducing the exposure to […]
  • Ban Smoking Near the Child: Issues of Morality The decision to ban smoking near the child on father’s request is one of the demonstrative examples. The father’s appeal to the Supreme Court of California with the requirement to prohibit his ex-wife from smoking […]
  • The Smoking Ban: Arguments Comparison The first argument against banning smoking employs the idea that smoking in specially designated areas cannot do harm to the health of non-smokers as the latter are supposed to avoid these areas.
  • Smoking Cessation and Patient Education in Nursing Pack-years are the concept that is used to determine the health risks of a smoking patient. The most important step in the management plan is to determine a date when the man should quit smoking.
  • Philip Morris Company’s Smoking Prevention Activity Philip Morris admits the existence of scientific proof that smoking leads to lung cancer in addition to other severe illnesses even after years of disputing such findings from health professionals.
  • Tobacco Smoking and Its Dangers Sufficient evidence also indicates that smoking is correlated with alcohol use and that it is capable of affecting one’s mental state to the point of heightening the risks of development of disorders.
  • Virginia Slims’ Impact on Female Smokers’ Number Considering this, through the investigation of Philip Morris’ mission which it pursued during the launch of the Virginia Slims campaign in 1968-1970 and the main regulatory actions undertaken by the Congress during this period, the […]
  • Cigarette Smoking and Parkinson’s Disease Risk Therefore, given the knowledge that cigarette smoking protects against the disease, it is necessary to determine the validity of these observations by finding the precise relationship between nicotine and PD.
  • Tuberculosis Statistics Among Cigarette Smokers The proposal outlines the statistical applications of one-way ANOVA, the study participants, the variables, study methods, expected results and biases, and the practical significance of the expected results.
  • Smoking Ban and UK’s Beer Industry However, there is an intricate type of relationship between the UK beer sector, the smoking ban, and the authorities that one can only understand by going through the study in detail The history of smoking […]
  • Status of Smoking around the World Economic factors and level of education have contributed a lot to the shift of balance in the status of smoking in the world.
  • Redwood Associates Company’s Smoking Ethical Issues Although employees are expected to know what morally they are supposed to undertake at their work place, it is the responsibility of the management and generally the Redwood’s hiring authority to give direction to its […]
  • Smokers’ Campaign: Finding a Home for Ciggy Butts When carrying out the campaign, it is important to know what the situation on the ground is to be able to address the root cause of the problem facing the population.
  • Mobile Applications to Quit Smoking A critical insight that can be gleaned from the said report is that one of the major factors linked to failure is the fact that smokers were unable to quit the habit on their own […]
  • Behavior Modification Technique: Smoking Cessation Some of its advantages include: its mode of application is in a way similar to the act of smoking and it has very few side effects.
  • Quitting Smoking: Strategies and Consequences Thus, for the world to realize a common positive improvement in population health, people must know the consequences of smoking not only for the smoker but also the society. The first step towards quitting smoking […]
  • Effects of Thought Suppression on Smoking Behavior In the article under analysis called I suppress, Therefore I smoke: Effects of Thought Suppression on Smoking Behavior, the authors dedicate their study to the evaluation of human behavior as well as the influence of […]
  • Suppressing Smoking Behavior and Its Effects The researchers observed that during the first and the second weeks of the suppressed behavior, the participants successfully managed to reduce their intake of cigarettes.
  • Smoking Cessation Methods These methods are a part of NRT or nicotine replacement therapy, they work according to the principle of providing the smoker with small portions of nicotine to minimize the addiction gradually and at the same […]
  • Understanding Advertising: Second-Hand Smoking The image of the boy caught by the smoke is in the center of the picture, and it is in contrast with the deep black background.
  • People Should Quit Smoking
  • Importance of Quitting Smoking
  • Cigarette Smoking in Public Places
  • Ban of Tobacco Smoking in Jamaica
  • Anti-Smoking Campaign in Canada
  • Electronic Cigarettes: Could They Help University Students Give Smoking Up?
  • Psychosocial Smoking Rehabilitation
  • The Program on Smoking Cessation for Employees
  • Tips From Former Smokers (Campaign)
  • Combating Smoking: Taxation Policies vs. Education Policies
  • The Program to Quit Smoking
  • Smoking Culture in Society
  • Possible Smoking Policies in Florida
  • Smoking Ban in the State of Florida
  • Core Functions of Public Health in the Context of Smoking and Heart Disease
  • Smoking: Pathophysiological Effects
  • Putting Out the Fires: Will Higher Taxes Reduce the Onset of Youth Smoking?
  • Hookah Smoking and Its Risks
  • Smoking Bans in US
  • Smoking as Activity Enhancer: Schizophrenia and Gender
  • Health Care Costs for Smokers
  • Medical Coverage for Smoking Related Diseases
  • Exposure to mass media proliferate smoking
  • The Realm of reality: Smoking
  • Ethical Problem of Smoking
  • The Rate of Smoking Among HIV Positive Cases.
  • Studying the Government’s Anti-Smoking Measures
  • Smoking Should Be Banned In the United States
  • Effectiveness of Cognitive Behavioral Theory on Smoking Cessation
  • Effectiveness of the Cognitive Behavioral Therapy for Smoking Cessation
  • Wayco Company’s Non-smoking Policy
  • Adverse Aspects of Smoking
  • Negative Impacts of Smoking on Individuals and Society
  • Dealing With the Increase in the Number of Smokers Between Ages 17 and 45
  • Cannabis Smoking in Canada
  • Smoking Ban in the United States of America
  • Dangers of Smoking Campaign
  • Should Cigarettes Be Banned? Essay
  • Smoking Ban in New York
  • Smoking and Adolescents
  • Trends in Smoking Prevalence by Race/Ethnicity
  • Business Ethics: Smoking Issue
  • Should Smoking Tobacco Be Classified As an Illegal Drug?
  • Where Does the Path to Smoking Addiction Start?
  • Public Health Communication: Quit Smoking
  • Are Estimated Peer Effects on Smoking Robust?
  • Are There Safe Smoking and Tobacco Options?
  • What Are the Health Risks of Smoking?
  • Does Cigarette Smoking Affect Body Weight?
  • Does Cigarette Smuggling Prop Up Smoking Rates?
  • What Foods Help You Quit Smoking?
  • How Can People Relax Without Smoking?
  • Does Education Affect Smoking Behaviors?
  • Is Vaping Worse Than Smoking?
  • Do Movies Affect Teen Smoking?
  • What Is Worse: Drinking or Smoking?
  • Does Smoking Affect Breathing Capacity?
  • Does Smoking Cause Lung Cancer?
  • Does Having More Children Increase the Likelihood of Parental Smoking?
  • Does Smoking Cigarettes Relieve Stress?
  • Does Time Preference Affect Smoking Behavior?
  • How Does Smoking Affect Cardiovascular Endurance?
  • How Hypnosis Can Help You Quit Smoking?
  • How Does Smoking Affect Brain?
  • How Nicotine Affects Your Quit Smoking Victory?
  • How Does Secondhand Smoking Affect Us?
  • Why Is Smoking Addictive?
  • How Smoking Bans Are Bad for Business?
  • Why Smoking Should Not Be Permitted in Restaurants?
  • Why Public Smoking Should Be Banned?
  • Why Has Cigarette Smoking Become So Prominent Within the American Culture?
  • What Makes Smoking and Computers Similar?
  • Does Smoking Affect Schooling?
  • What Effects Can Cigarette Smoking Have on the Respiratory System?
  • What Are the Most Prevalent Dangers of Smoking and Drinking?
  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2024, February 29). 235 Smoking Essay Topics & Examples. https://ivypanda.com/essays/topic/smoking-essay-examples/

"235 Smoking Essay Topics & Examples." IvyPanda , 29 Feb. 2024, ivypanda.com/essays/topic/smoking-essay-examples/.

IvyPanda . (2024) '235 Smoking Essay Topics & Examples'. 29 February.

IvyPanda . 2024. "235 Smoking Essay Topics & Examples." February 29, 2024. https://ivypanda.com/essays/topic/smoking-essay-examples/.

1. IvyPanda . "235 Smoking Essay Topics & Examples." February 29, 2024. https://ivypanda.com/essays/topic/smoking-essay-examples/.

Bibliography

IvyPanda . "235 Smoking Essay Topics & Examples." February 29, 2024. https://ivypanda.com/essays/topic/smoking-essay-examples/.

  • Social Security Paper Topics
  • Drugs Titles
  • Cannabis Essay Titles
  • Global Issues Essay Topics
  • Cardiovascular Diseases Titles
  • Marijuana Ideas
  • NHS Research Ideas
  • Hypertension Topics

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Office on Smoking and Health (US). The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US); 2006.

Cover of The Health Consequences of Involuntary Exposure to Tobacco Smoke

The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General.

1 introduction, summary, and conclusions.

  • Introduction

The topic of passive or involuntary smoking was first addressed in the 1972 U.S. Surgeon General’s report ( The Health Consequences of Smoking , U.S. Department of Health, Education, and Welfare [USDHEW] 1972 ), only eight years after the first Surgeon General’s report on the health consequences of active smoking ( USDHEW 1964 ). Surgeon General Dr. Jesse Steinfeld had raised concerns about this topic, leading to its inclusion in that report. According to the 1972 report, nonsmokers inhale the mixture of sidestream smoke given off by a smoldering cigarette and mainstream smoke exhaled by a smoker, a mixture now referred to as “secondhand smoke” or “environmental tobacco smoke.” Cited experimental studies showed that smoking in enclosed spaces could lead to high levels of cigarette smoke components in the air. For carbon monoxide ( CO ) specifically, levels in enclosed spaces could exceed levels then permitted in outdoor air. The studies supported a conclusion that “an atmosphere contaminated with tobacco smoke can contribute to the discomfort of many individuals” ( USDHEW 1972 , p. 7). The possibility that CO emitted from cigarettes could harm persons with chronic heart or lung disease was also mentioned.

Secondhand tobacco smoke was then addressed in greater depth in Chapter 4 (Involuntary Smoking) of the 1975 Surgeon General’s report, The Health Consequences of Smoking ( USDHEW 1975 ). The chapter noted that involuntary smoking takes place when nonsmokers inhale both sidestream and exhaled mainstream smoke and that this “smoking” is “involuntary” when “the exposure occurs as an unavoidable consequence of breathing in a smoke-filled environment” (p. 87). The report covered exposures and potential health consequences of involuntary smoking, and the researchers concluded that smoking on buses and airplanes was annoying to nonsmokers and that involuntary smoking had potentially adverse consequences for persons with heart and lung diseases. Two studies on nicotine concentrations in nonsmokers raised concerns about nicotine as a contributing factor to atherosclerotic cardiovascular disease in nonsmokers.

The 1979 Surgeon General’s report, Smoking and Health: A Report of the Surgeon General ( USDHEW 1979 ), also contained a chapter entitled “Involuntary Smoking.” The chapter stressed that “attention to involuntary smoking is of recent vintage, and only limited information regarding the health effects of such exposure upon the nonsmoker is available” (p. 11–35). The chapter concluded with recommendations for research including epidemiologic and clinical studies. The 1982 Surgeon General’s report specifically addressed smoking and cancer ( U.S. Department of Health and Human Services [USDHHS] 1982 ). By 1982, there were three published epidemiologic studies on involuntary smoking and lung cancer, and the 1982 Surgeon General’s report included a brief chapter on this topic. That chapter commented on the methodologic difficulties inherent in such studies, including exposure assessment, the lengthy interval during which exposures are likely to be relevant, and accounting for exposures to other carcinogens. Nonetheless, the report concluded that “Although the currently available evidence is not sufficient to conclude that passive or involuntary smoking causes lung cancer in nonsmokers, the evidence does raise concern about a possible serious public health problem” (p. 251).

Involuntary smoking was also reviewed in the 1984 report, which focused on chronic obstructive pulmonary disease and smoking ( USDHHS 1984 ). Chapter 7 (Passive Smoking) of that report included a comprehensive review of the mounting information on smoking by parents and the effects on respiratory health of their children, data on irritation of the eye, and the more limited evidence on pulmonary effects of involuntary smoking on adults. The chapter began with a compilation of measurements of tobacco smoke components in various indoor environments. The extent of the data had increased substantially since 1972. By 1984, the data included measurements of more specific indicators such as acrolein and nicotine, and less specific indicators such as particulate matter ( PM ), nitrogen oxides, and CO . The report reviewed new evidence on exposures of nonsmokers using bio-markers, with substantial information on levels of cotinine, a major nicotine metabolite. The report anticipated future conclusions with regard to respiratory effects of parental smoking on child respiratory health ( Table 1.1 ).

Table 1.1

Conclusions from previous Surgeon General’s reports on the health effects of secondhand smoke exposure

Involuntary smoking was the topic for the entire 1986 Surgeon General’s report, The Health Consequences of Involuntary Smoking ( USDHHS 1986 ). In its 359 pages, the report covered the full breadth of the topic, addressing toxicology and dosimetry of tobacco smoke; the relevant evidence on active smoking; patterns of exposure of nonsmokers to tobacco smoke; the epidemiologic evidence on involuntary smoking and disease risks for infants, children, and adults; and policies to control involuntary exposure to tobacco smoke. That report concluded that involuntary smoking caused lung cancer in lifetime nonsmoking adults and was associated with adverse effects on respiratory health in children. The report also stated that simply separating smokers and nonsmokers within the same airspace reduced but did not eliminate exposure to secondhand smoke. All of these findings are relevant to public health and public policy ( Table 1.1 ). The lung cancer conclusion was based on extensive information already available on the carcinogenicity of active smoking, the qualitative similarities between secondhand and mainstream smoke, the uptake of tobacco smoke components by nonsmokers, and the epidemiologic data on involuntary smoking. The three major conclusions of the report ( Table 1.2 ), led Dr. C. Everett Koop, Surgeon General at the time, to comment in his preface that “the right of smokers to smoke ends where their behavior affects the health and well-being of others; furthermore, it is the smokers’ responsibility to ensure that they do not expose nonsmokers to the potential [ sic ] harmful effects of tobacco smoke” ( USDHHS 1986 , p. xii).

Table 1.2

Major conclusions of the 1986 Surgeon General’s report, The Health Consequences of Involuntary Smoking

Two other reports published in 1986 also reached the conclusion that involuntary smoking increased the risk for lung cancer. The International Agency for Research on Cancer ( IARC ) of the World Health Organization concluded that “passive smoking gives rise to some risk of cancer” ( IARC 1986 , p. 314). In its monograph on tobacco smoking, the agency supported this conclusion on the basis of the characteristics of sidestream and mainstream smoke, the absorption of tobacco smoke materials during an involuntary exposure, and the nature of dose-response relationships for carcinogenesis. In the same year, the National Research Council ( NRC ) also concluded that involuntary smoking increases the incidence of lung cancer in nonsmokers ( NRC 1986 ). In reaching this conclusion, the NRC report cited the biologic plausibility of the association between exposure to secondhand smoke and lung cancer and the supporting epidemiologic evidence. On the basis of a pooled analysis of the epidemiologic data adjusted for bias, the report concluded that the best estimate for the excess risk of lung cancer in nonsmokers married to smokers was 25 percent, compared with nonsmokers married to nonsmokers. With regard to the effects of involuntary smoking on children, the NRC report commented on the literature linking secondhand smoke exposures from parental smoking to increased risks for respiratory symptoms and infections and to a slightly diminished rate of lung growth.

Since 1986, the conclusions with regard to both the carcinogenicity of secondhand smoke and the adverse effects of parental smoking on the health of children have been echoed and expanded ( Table 1.3 ). In 1992, the U.S. Environmental Protection Agency ( EPA ) published its risk assessment of secondhand smoke as a carcinogen ( USEPA 1992 ). The agency’s evaluation drew on toxicologic information on secondhand smoke and the extensive literature on active smoking. A comprehensive meta-analysis of the 31 epidemiologic studies of secondhand smoke and lung cancer published up to that time was central to the decision to classify secondhand smoke as a group A carcinogen—namely, a known human carcinogen. Estimates of approximately 3,000 U.S. lung cancer deaths per year in non-smokers were attributed to secondhand smoke. The report also covered other respiratory health effects in children and adults and concluded that involuntary smoking is causally associated with several adverse respiratory effects in children. There was also a quantitative risk assessment for the impact of involuntary smoking on childhood asthma and lower respiratory tract infections in young children.

Table 1.3. Selected major reports, other than those of the U.

Selected major reports, other than those of the U.S. Surgeon General, addressing adverse effects from exposure to tobacco smoke

In the decade since the 1992 EPA report, scientific panels continued to evaluate the mounting evidence linking involuntary smoking to adverse health effects ( Table 1.3 ). The most recent was the 2005 report of the California EPA ( Cal/EPA 2005 ). Over time, research has repeatedly affirmed the conclusions of the 1986 Surgeon General’s reports and studies have further identified causal associations of involuntary smoking with diseases and other health disorders. The epidemiologic evidence on involuntary smoking has markedly expanded since 1986, as have the data on exposure to tobacco smoke in the many environments where people spend time. An understanding of the mechanisms by which involuntary smoking causes disease has also deepened.

As part of the environmental health hazard assessment, Cal/EPA identified specific health effects causally associated with exposure to secondhand smoke. The agency estimated the annual excess deaths in the United States that are attributable to secondhand smoke exposure for specific disorders: sudden infant death syndrome ( SIDS ), cardiac-related illnesses (ischemic heart disease), and lung cancer ( Cal/EPA 2005 ). For the excess incidence of other health outcomes, either new estimates were provided or estimates from the 1997 health hazard assessment were used without any revisions ( Cal/EPA 1997 ). Overall, Cal/EPA estimated that about 50,000 excess deaths result annually from exposure to secondhand smoke ( Cal/EPA 2005 ). Estimated annual excess deaths for the total U.S. population are about 3,400 (a range of 3,423 to 8,866) from lung cancer, 46,000 (a range of 22,700 to 69,600) from cardiac-related illnesses, and 430 from SIDS. The agency also estimated that between 24,300 and 71,900 low birth weight or pre-term deliveries, about 202,300 episodes of childhood asthma (new cases and exacerbations), between 150,000 and 300,000 cases of lower respiratory illness in children, and about 789,700 cases of middle ear infections in children occur each year in the United States as a result of exposure to secondhand smoke.

This new 2006 Surgeon General’s report returns to the topic of involuntary smoking. The health effects of involuntary smoking have not received comprehensive coverage in this series of reports since 1986. Reports since then have touched on selected aspects of the topic: the 1994 report on tobacco use among young people ( USDHHS 1994 ), the 1998 report on tobacco use among U.S. racial and ethnic minorities ( USDHHS 1998 ), and the 2001 report on women and smoking ( USDHHS 2001 ). As involuntary smoking remains widespread in the United States and elsewhere, the preparation of this report was motivated by the persistence of involuntary smoking as a public health problem and the need to evaluate the substantial new evidence reported since 1986. This report substantially expands the list of topics that were included in the 1986 report. Additional topics include SIDS , developmental effects, and other reproductive effects; heart disease in adults; and cancer sites beyond the lung. For some associations of involuntary smoking with adverse health effects, only a few studies were reviewed in 1986 (e. g ., ear disease in children); now, the relevant literature is substantial. Consequently, this report uses meta-analysis to quantitatively summarize evidence as appropriate. Following the approach used in the 2004 report ( The Health Consequences of Smoking , USDHHS 2004 ), this 2006 report also systematically evaluates the evidence for causality, judging the extent of the evidence available and then making an inference as to the nature of the association.

Organization of the Report

This twenty-ninth report of the Surgeon General examines the topics of toxicology of secondhand smoke, assessment and prevalence of exposure to secondhand smoke, reproductive and developmental health effects, respiratory effects of exposure to secondhand smoke in children and adults, cancer among adults, cardiovascular diseases, and the control of secondhand smoke exposure.

This introductory chapter (Chapter 1) includes a discussion of the concept of causation and introduces concepts of causality that are used throughout this report; this chapter also summarizes the major conclusions of the report. Chapter 2 (Toxicology of Secondhand Smoke) sets out a foundation for interpreting the observational evidence that is the focus of most of the following chapters. The discussion details the mechanisms that enable tobacco smoke components to injure the respiratory tract and cause nonmalignant and malignant diseases and other adverse effects. Chapter 3 (Assessment of Exposure to Secondhand Smoke) provides a perspective on key factors that determine exposures of people to secondhand smoke in indoor environments, including building designs and operations, atmospheric markers of secondhand smoke, exposure models, and biomarkers of exposure to secondhand smoke. Chapter 4 (Prevalence of Exposure to Secondhand Smoke) summarizes findings that focus on nicotine measurements in the air and cotinine measurements in biologic materials. The chapter includes exposures in the home, workplace, public places, and special populations. Chapter 5 (Reproductive and Developmental Effects from Exposure to Secondhand Smoke) reviews the health effects on reproduction, on infants, and on child development. Chapter 6 (Respiratory Effects in Children from Exposure to Secondhand Smoke) examines the effects of parental smoking on the respiratory health of children. Chapter 7 (Cancer Among Adults from Exposure to Secondhand Smoke) summarizes the evidence on cancer of the lung, breast, nasal sinuses, and the cervix. Chapter 8 (Cardiovascular Diseases from Exposure to Secondhand Smoke) discusses coronary heart disease ( CHD ), stroke, and subclinical vascular disease. Chapter 9 (Respiratory Effects in Adults from Exposure to Secondhand Smoke) examines odor and irritation, respiratory symptoms, lung function, and respiratory diseases such as asthma and chronic obstructive pulmonary disease. Chapter 10 (Control of Secondhand Smoke Exposure) considers measures used to control exposure to secondhand smoke in public places, including legislation, education, and approaches based on building designs and operations. The report concludes with “A Vision for the Future.” Major conclusions of the report were distilled from the chapter conclusions and appear later in this chapter.

Preparation of the Report

This report of the Surgeon General was prepared by the Office on Smoking and Health, National Center for Chronic Disease Prevention and Health Promotion, Coordinating Center for Health Promotion, Centers for Disease Control and Prevention ( CDC ), and U.S. DHHS. Initial chapters were written by 22 experts who were selected because of their knowledge of a particular topic. The contributions of the initial experts were consolidated into 10 major chapters that were then reviewed by more than 40 peer reviewers. The entire manuscript was then sent to more than 30 scientists and experts who reviewed it for its scientific integrity. After each review cycle, the drafts were revised by the scientific editors on the basis of the experts’ comments. Subsequently, the report was reviewed by various institutes and agencies within U.S. DHHS. Publication lags, even short ones, prevent an up-to-the-minute inclusion of all recently published articles and data. Therefore, by the time the public reads this report, there may be additional published studies or data. To provide published information as current as possible, this report includes an Appendix of more recent studies that represent major additions to the literature.

This report is also accompanied by a companion database of key evidence that is accessible through the Internet ( http://www.cdc.gov/tobacco ). The database includes a uniform description of the studies and results on the health effects of exposure to secondhand smoke that were presented in a format compatible with abstraction into standardized tables. Readers of the report may access these data for additional analyses, tables, or figures.

  • Definitions and Terminology

The inhalation of tobacco smoke by nonsmokers has been variably referred to as “passive smoking” or “involuntary smoking.” Smokers, of course, also inhale secondhand smoke. Cigarette smoke contains both particles and gases generated by the combustion at high temperatures of tobacco, paper, and additives. The smoke inhaled by nonsmokers that contaminates indoor spaces and outdoor environments has often been referred to as “secondhand smoke” or “environmental tobacco smoke.” This inhaled smoke is the mixture of sidestream smoke released by the smoldering cigarette and the mainstream smoke that is exhaled by a smoker. Sidestream smoke, generated at lower temperatures and under somewhat different combustion conditions than mainstream smoke, tends to have higher concentrations of many of the toxins found in cigarette smoke ( USDHHS 1986 ). However, it is rapidly diluted as it travels away from the burning cigarette.

Secondhand smoke is an inherently dynamic mixture that changes in characteristics and concentration with the time since it was formed and the distance it has traveled. The smoke particles change in size and composition as gaseous components are volatilized and moisture content changes; gaseous elements of secondhand smoke may be adsorbed onto materials, and particle concentrations drop with both dilution in the air or environment and impaction on surfaces, including the lungs or on the body. Because of its dynamic nature, a specific quantitative definition of secondhand smoke cannot be offered.

This report uses the term secondhand smoke in preference to environmental tobacco smoke, even though the latter may have been used more frequently in previous reports. The descriptor “secondhand” captures the involuntary nature of the exposure, while “environmental” does not. This report also refers to the inhalation of secondhand smoke as involuntary smoking, acknowledging that most nonsmokers do not want to inhale tobacco smoke. The exposure of the fetus to tobacco smoke, whether from active smoking by the mother or from her exposure to secondhand smoke, also constitutes involuntary smoking.

  • Evidence Evaluation

Following the model of the 1964 report, the Surgeon General’s reports on smoking have included comprehensive compilations of the evidence on the health effects of smoking. The evidence is analyzed to identify causal associations between smoking and disease according to enunciated principles, sometimes referred to as the “Surgeon General’s criteria” or the “Hill” criteria (after Sir Austin Bradford Hill) for causality ( USDHEW 1964 ; USDHHS 2004 ). Application of these criteria involves covering all relevant observational and experimental evidence. The criteria, offered in a brief chapter of the 1964 report entitled “Criteria for Judgment,” included (1) the consistency of the association, (2) the strength of the association, (3) the specificity of the association, (4) the temporal relationship of the association, and (5) the coherence of the association. Although these criteria have been criticized (e. g ., Rothman and Greenland 1998 ), they have proved useful as a framework for interpreting evidence on smoking and other postulated causes of disease, and for judging whether causality can be inferred.

In the 2004 report of the Surgeon General, The Health Consequences of Smoking , the framework for interpreting evidence on smoking and health was revisited in depth for the first time since the 1964 report ( USDHHS 2004 ). The 2004 report provided a four-level hierarchy for interpreting evidence ( Table 1.4 ). The categories acknowledge that evidence can be “suggestive” but not adequate to infer a causal relationship, and also allows for evidence that is “suggestive of no causal relationship.” Since the 2004 report, the individual chapter conclusions have consistently used this four-level hierarchy ( Table 1.4 ), but evidence syntheses and other summary statements may use either the term “increased risk” or “cause” to describe instances in which there is sufficient evidence to conclude that active or involuntary smoking causes a disease or condition. This four-level framework also sharply and completely separates conclusions regarding causality from the implications of such conclusions.

Table 1.4

Four-level hierarchy for classifying the strength of causal inferences based on available evidence

That same framework was used in this report on involuntary smoking and health. The criteria dating back to the 1964 Surgeon General’s report remain useful as guidelines for evaluating evidence ( USDHEW 1964 ), but they were not intended to be applied strictly or as a “checklist” that needed to be met before the designation of “causal” could be applied to an association. In fact, for involuntary smoking and health, several of the criteria will not be met for some associations. Specificity, referring to a unique exposure-disease relationship (e. g ., the association between thalidomide use during pregnancy and unusual birth defects), can be set aside as not relevant, as all of the health effects considered in this report have causes other than involuntary smoking. Associations are considered more likely to be causal as the strength of an association increases because competing explanations become less plausible alternatives. However, based on knowledge of dosimetry and mechanisms of injury and disease causation, the risk is anticipated to be only slightly or modestly increased for some associations of involuntary smoking with disease, such as lung cancer, particularly when the very strong relative risks found for active smokers are compared with those for lifetime nonsmokers. The finding of only a small elevation in risk, as in the example of spousal smoking and lung cancer risk in lifetime nonsmokers, does not weigh against a causal association; however, alternative explanations for a risk of a small magnitude need full exploration and cannot be so easily set aside as alternative explanations for a stronger association. Consistency, coherence, and the temporal relationship of involuntary smoking with disease are central to the interpretations in this report. To address coherence, the report draws not only on the evidence for involuntary smoking, but on the even more extensive literature on active smoking and disease.

Although the evidence reviewed in this report comes largely from investigations of secondhand smoke specifically, the larger body of evidence on active smoking is also relevant to many of the associations that were evaluated. The 1986 report found secondhand smoke to be qualitatively similar to mainstream smoke inhaled by the smoker and concluded that secondhand smoke would be expected to have “a toxic and carcinogenic potential that would not be expected to be qualitatively different from that of MS [mainstream smoke]” ( USDHHS 1986 , p. 23). The 2004 report of the Surgeon General revisited the health consequences of active smoking ( USDHHS 2004 ), and the conclusions substantially expanded the list of diseases and conditions caused by smoking. Chapters in the present report consider the evidence on active smoking that is relevant to biologic plausibility for causal associations between involuntary smoking and disease. The reviews included in this report cover evidence identified through search strategies set out in each chapter. Of necessity, the evidence on mechanisms was selectively reviewed. However, an attempt was made to cover all health studies through specified target dates. Because of the substantial amount of time involved in preparing this report, lists of new key references published after these cut-off dates are included in an Appendix . Literature reviews were extended when new evidence was sufficient to possibly change the level of a causal conclusion.

  • Major Conclusions

This report returns to involuntary smoking, the topic of the 1986 Surgeon General’s report. Since then, there have been many advances in the research on secondhand smoke, and substantial evidence has been reported over the ensuing 20 years. This report uses the revised language for causal conclusions that was implemented in the 2004 Surgeon General’s report ( USDHHS 2004 ). Each chapter provides a comprehensive review of the evidence, a quantitative synthesis of the evidence if appropriate, and a rigorous assessment of sources of bias that may affect interpretations of the findings. The reviews in this report reaffirm and strengthen the findings of the 1986 report. With regard to the involuntary exposure of nonsmokers to tobacco smoke, the scientific evidence now supports the following major conclusions:

  • Secondhand smoke causes premature death and disease in children and in adults who do not smoke.
  • Children exposed to secondhand smoke are at an increased risk for sudden infant death syndrome ( SIDS ), acute respiratory infections, ear problems, and more severe asthma. Smoking by parents causes respiratory symptoms and slows lung growth in their children.
  • Exposure of adults to secondhand smoke has immediate adverse effects on the cardiovascular system and causes coronary heart disease and lung cancer.
  • The scientific evidence indicates that there is no risk-free level of exposure to secondhand smoke.
  • Many millions of Americans, both children and adults, are still exposed to secondhand smoke in their homes and workplaces despite substantial progress in tobacco control.
  • Eliminating smoking in indoor spaces fully protects nonsmokers from exposure to secondhand smoke. Separating smokers from nonsmokers, cleaning the air, and ventilating buildings cannot eliminate exposures of nonsmokers to secondhand smoke.
  • Chapter Conclusions

Chapter 2 Toxicology of Secondhand Smoke

Evidence of carcinogenic effects from secondhand smoke exposure.

  • 1. More than 50 carcinogens have been identified in sidestream and secondhand smoke.
  • 2. The evidence is sufficient to infer a causal relationship between exposure to secondhand smoke and its condensates and tumors in laboratory animals.
  • 3. The evidence is sufficient to infer that exposure of nonsmokers to secondhand smoke causes a significant increase in urinary levels of metabolites of the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone ( NNK ). The presence of these metabolites links exposure to secondhand smoke with an increased risk for lung cancer.
  • 4. The mechanisms by which secondhand smoke causes lung cancer are probably similar to those observed in smokers. The overall risk of secondhand smoke exposure, compared with active smoking, is diminished by a substantially lower carcinogenic dose.

Mechanisms of Respiratory Tract Injury and Disease Caused by Secondhand Smoke Exposure

  • 5. The evidence indicates multiple mechanisms by which secondhand smoke exposure causes injury to the respiratory tract.
  • 6. The evidence indicates mechanisms by which secondhand smoke exposure could increase the risk for sudden infant death syndrome.

Mechanisms of Secondhand Smoke Exposure and Heart Disease

  • 7. The evidence is sufficient to infer that exposure to secondhand smoke has a prothrombotic effect.
  • 8. The evidence is sufficient to infer that exposure to secondhand smoke causes endothelial cell dysfunctions.
  • 9. The evidence is sufficient to infer that exposure to secondhand smoke causes atherosclerosis in animal models.

Chapter 3. Assessment of Exposure to Secondhand Smoke

Building designs and operations.

  • 1. Current heating, ventilating, and air conditioning systems alone cannot control exposure to secondhand smoke.
  • 2. The operation of a heating, ventilating, and air conditioning system can distribute secondhand smoke throughout a building.

Exposure Models

  • 3. Atmospheric concentration of nicotine is a sensitive and specific indicator for secondhand smoke.
  • 4. Smoking increases indoor particle concentrations.
  • 5. Models can be used to estimate concentrations of secondhand smoke.

Biomarkers of Exposure to Secondhand Smoke

  • 6. Biomarkers suitable for assessing recent exposures to secondhand smoke are available.
  • 7. At this time, cotinine, the primary proximate metabolite of nicotine, remains the biomarker of choice for assessing secondhand smoke exposure.
  • 8. Individual biomarkers of exposure to secondhand smoke represent only one component of a complex mixture, and measurements of one marker may not wholly reflect an exposure to other components of concern as a result of involuntary smoking.

Chapter 4. Prevalence of Exposure to Secondhand Smoke

  • The evidence is sufficient to infer that large numbers of nonsmokers are still exposed to secondhand smoke.
  • Exposure of nonsmokers to secondhand smoke has declined in the United States since the 1986 Surgeon General’s report, The Health Consequences of Involuntary Smoking .
  • The evidence indicates that the extent of secondhand smoke exposure varies across the country.
  • Homes and workplaces are the predominant locations for exposure to secondhand smoke.
  • Exposure to secondhand smoke tends to be greater for persons with lower incomes.
  • Exposure to secondhand smoke continues in restaurants, bars, casinos, gaming halls, and vehicles.

Chapter 5. Reproductive and Developmental Effects from Exposure to Secondhand Smoke

  • 1. The evidence is inadequate to infer the presence or absence of a causal relationship between maternal exposure to secondhand smoke and female fertility or fecundability. No data were found on paternal exposure to secondhand smoke and male fertility or fecundability.

Pregnancy (Spontaneous Abortion and Perinatal Death)

  • 2. The evidence is inadequate to infer the presence or absence of a causal relationship between maternal exposure to secondhand smoke during pregnancy and spontaneous abortion.

Infant Deaths

  • 3. The evidence is inadequate to infer the presence or absence of a causal relationship between exposure to secondhand smoke and neonatal mortality.

Sudden Infant Death Syndrome

  • 4. The evidence is sufficient to infer a causal relationship between exposure to secondhand smoke and sudden infant death syndrome.

Preterm Delivery

  • 5. The evidence is suggestive but not sufficient to infer a causal relationship between maternal exposure to secondhand smoke during pregnancy and preterm delivery.

Low Birth Weight

  • 6. The evidence is sufficient to infer a causal relationship between maternal exposure to secondhand smoke during pregnancy and a small reduction in birth weight.

Congenital Malformations

  • 7. The evidence is inadequate to infer the presence or absence of a causal relationship between exposure to secondhand smoke and congenital malformations.

Cognitive Development

  • 8. The evidence is inadequate to infer the presence or absence of a causal relationship between exposure to secondhand smoke and cognitive functioning among children.

Behavioral Development

  • 9. The evidence is inadequate to infer the presence or absence of a causal relationship between exposure to secondhand smoke and behavioral problems among children.

Height/Growth

  • 10. The evidence is inadequate to infer the presence or absence of a causal relationship between exposure to secondhand smoke and children’s height/growth.

Childhood Cancer

  • 11. The evidence is suggestive but not sufficient to infer a causal relationship between prenatal and postnatal exposure to secondhand smoke and childhood cancer.
  • 12. The evidence is inadequate to infer the presence or absence of a causal relationship between maternal exposure to secondhand smoke during pregnancy and childhood cancer.
  • 13. The evidence is inadequate to infer the presence or absence of a causal relationship between exposure to secondhand smoke during infancy and childhood cancer.
  • 14. The evidence is suggestive but not sufficient to infer a causal relationship between prenatal and postnatal exposure to secondhand smoke and childhood leukemias.
  • 15. The evidence is suggestive but not sufficient to infer a causal relationship between prenatal and postnatal exposure to secondhand smoke and childhood lymphomas.
  • 16. The evidence is suggestive but not sufficient to infer a causal relationship between prenatal and postnatal exposure to secondhand smoke and childhood brain tumors.
  • 17. The evidence is inadequate to infer the presence or absence of a causal relationship between prenatal and postnatal exposure to secondhand smoke and other childhood cancer types.

Chapter 6. Respiratory Effects in Children from Exposure to Secondhand Smoke

Lower respiratory illnesses in infancy and early childhood.

  • 1. The evidence is sufficient to infer a causal relationship between secondhand smoke exposure from parental smoking and lower respiratory illnesses in infants and children.
  • 2. The increased risk for lower respiratory illnesses is greatest from smoking by the mother.

Middle Ear Disease and Adenotonsillectomy

  • 3. The evidence is sufficient to infer a causal relationship between parental smoking and middle ear disease in children, including acute and recurrent otitis media and chronic middle ear effusion.
  • 4. The evidence is suggestive but not sufficient to infer a causal relationship between parental smoking and the natural history of middle ear effusion.
  • 5. The evidence is inadequate to infer the presence or absence of a causal relationship between parental smoking and an increase in the risk of adenoidectomy or tonsillectomy among children.

Respiratory Symptoms and Prevalent Asthma in School-Age Children

  • 6. The evidence is sufficient to infer a causal relationship between parental smoking and cough, phlegm, wheeze, and breathlessness among children of school age.
  • 7. The evidence is sufficient to infer a causal relationship between parental smoking and ever having asthma among children of school age.

Childhood Asthma Onset

  • 8. The evidence is sufficient to infer a causal relationship between secondhand smoke exposure from parental smoking and the onset of wheeze illnesses in early childhood.
  • 9. The evidence is suggestive but not sufficient to infer a causal relationship between secondhand smoke exposure from parental smoking and the onset of childhood asthma.
  • 10. The evidence is inadequate to infer the presence or absence of a causal relationship between parental smoking and the risk of immunoglobulin E-mediated allergy in their children.

Lung Growth and Pulmonary Function

  • 11. The evidence is sufficient to infer a causal relationship between maternal smoking during pregnancy and persistent adverse effects on lung function across childhood.
  • 12. The evidence is sufficient to infer a causal relationship between exposure to secondhand smoke after birth and a lower level of lung function during childhood.

Chapter 7. Cancer Among Adults from Exposure to Secondhand Smoke

Lung cancer.

  • 1. The evidence is sufficient to infer a causal relationship between secondhand smoke exposure and lung cancer among lifetime nonsmokers. This conclusion extends to all secondhand smoke exposure, regardless of location.
  • 2. The pooled evidence indicates a 20 to 30 percent increase in the risk of lung cancer from secondhand smoke exposure associated with living with a smoker.

Breast Cancer

  • 3. The evidence is suggestive but not sufficient to infer a causal relationship between secondhand smoke and breast cancer.

Nasal Sinus Cavity and Nasopharyngeal Carcinoma

  • 4. The evidence is suggestive but not sufficient to infer a causal relationship between secondhand smoke exposure and a risk of nasal sinus cancer among nonsmokers.
  • 5. The evidence is inadequate to infer the presence or absence of a causal relationship between secondhand smoke exposure and a risk of nasopharyngeal carcinoma among nonsmokers.

Cervical Cancer

  • 6. The evidence is inadequate to infer the presence or absence of a causal relationship between secondhand smoke exposure and the risk of cervical cancer among lifetime nonsmokers.

Chapter 8. Cardiovascular Diseases from Exposure to Secondhand Smoke

  • The evidence is sufficient to infer a causal relationship between exposure to secondhand smoke and increased risks of coronary heart disease morbidity and mortality among both men and women.
  • Pooled relative risks from meta-analyses indicate a 25 to 30 percent increase in the risk of coronary heart disease from exposure to secondhand smoke.
  • The evidence is suggestive but not sufficient to infer a causal relationship between exposure to secondhand smoke and an increased risk of stroke.
  • Studies of secondhand smoke and subclinical vascular disease, particularly carotid arterial wall thickening, are suggestive but not sufficient to infer a causal relationship between exposure to secondhand smoke and atherosclerosis.

Chapter 9. Respiratory Effects in Adults from Exposure to Secondhand Smoke

Odor and irritation.

  • 1. The evidence is sufficient to infer a causal relationship between secondhand smoke exposure and odor annoyance.
  • 2. The evidence is sufficient to infer a causal relationship between secondhand smoke exposure and nasal irritation.
  • 3. The evidence is suggestive but not sufficient to conclude that persons with nasal allergies or a history of respiratory illnesses are more susceptible to developing nasal irritation from secondhand smoke exposure.

Respiratory Symptoms

  • 4. The evidence is suggestive but not sufficient to infer a causal relationship between secondhand smoke exposure and acute respiratory symptoms including cough, wheeze, chest tightness, and difficulty breathing among persons with asthma.
  • 5. The evidence is suggestive but not sufficient to infer a causal relationship between secondhand smoke exposure and acute respiratory symptoms including cough, wheeze, chest tightness, and difficulty breathing among healthy persons.
  • 6. The evidence is suggestive but not sufficient to infer a causal relationship between secondhand smoke exposure and chronic respiratory symptoms.

Lung Function

  • 7. The evidence is suggestive but not sufficient to infer a causal relationship between short-term secondhand smoke exposure and an acute decline in lung function in persons with asthma.
  • 8. The evidence is inadequate to infer the presence or absence of a causal relationship between short-term secondhand smoke exposure and an acute decline in lung function in healthy persons.
  • 9. The evidence is suggestive but not sufficient to infer a causal relationship between chronic secondhand smoke exposure and a small decrement in lung function in the general population.
  • 10. The evidence is inadequate to infer the presence or absence of a causal relationship between chronic secondhand smoke exposure and an accelerated decline in lung function.
  • 11. The evidence is suggestive but not sufficient to infer a causal relationship between secondhand smoke exposure and adult-onset asthma.
  • 12. The evidence is suggestive but not sufficient to infer a causal relationship between secondhand smoke exposure and a worsening of asthma control.

Chronic Obstructive Pulmonary Disease

  • 13. The evidence is suggestive but not sufficient to infer a causal relationship between secondhand smoke exposure and risk for chronic obstructive pulmonary disease.
  • 14. The evidence is inadequate to infer the presence or absence of a causal relationship between secondhand smoke exposure and morbidity in persons with chronic obstructive pulmonary disease.

Chapter 10. Control of Secondhand Smoke Exposure

  • Workplace smoking restrictions are effective in reducing secondhand smoke exposure.
  • Workplace smoking restrictions lead to less smoking among covered workers.
  • Establishing smoke-free workplaces is the only effective way to ensure that secondhand smoke exposure does not occur in the workplace.
  • The majority of workers in the United States are now covered by smoke-free policies.
  • The extent to which workplaces are covered by smoke-free policies varies among worker groups, across states, and by sociodemographic factors. Workplaces related to the entertainment and hospitality industries have notably high potential for secondhand smoke exposure.
  • Evidence from peer-reviewed studies shows that smoke-free policies and regulations do not have an adverse economic impact on the hospitality industry.
  • Evidence suggests that exposure to secondhand smoke varies by ethnicity and gender.
  • In the United States, the home is now becoming the predominant location for exposure of children and adults to secondhand smoke.
  • Total bans on indoor smoking in hospitals, restaurants, bars, and offices substantially reduce secondhand smoke exposure, up to several orders of magnitude with incomplete compliance, and with full compliance, exposures are eliminated.
  • Exposures of nonsmokers to secondhand smoke cannot be controlled by air cleaning or mechanical air exchange.
  • Methodologic Issues

Much of the evidence on the health effects of involuntary smoking comes from observational epidemiologic studies that were carried out to test hypotheses related to secondhand smoke and risk for diseases and other adverse health effects. The challenges faced in carrying out these studies reflect those of observational research generally: assessment of the relevant exposures and outcomes with sufficient validity and precision, selection of an appropriate study design, identification of an appropriate and sufficiently large study population, and collection of information on other relevant factors that may confound or modify the association being studied. The challenge of accurately classifying secondhand smoke exposures confronts all studies of such exposures, and consequently the literature on approaches to and limitations of exposure classification is substantial. Sources of bias that can affect the findings of epidemiologic studies have been widely discussed ( Rothman and Greenland 1998 ), both in general and in relation to studies of involuntary smoking. Concerns about bias apply to any study of an environmental agent and disease risk: misclassification of exposures or outcomes, confounding effect modification, and proper selection of study participants. In addition, the generalizability of findings from one population to another (external validity) further determines the value of evidence from a study. Another methodologic concern affecting secondhand smoke literature comes from the use of meta-analysis to combine the findings of epidemiologic studies; general concerns related to the use of meta-analysis for observational data and more specific concerns related to involuntary smoking have also been raised. This chapter considers these methodologic issues in anticipation of more specific treatment in the following chapters.

Classification of Secondhand Smoke Exposure

For secondhand smoke, as for any environmental factor that may be a cause of disease, the exposure assessment might encompass the time and place of the exposure, cumulative exposures, exposure during a particular time, or a recent exposure ( Jaakkola and Jaakkola 1997 ; Jaakkola and Samet 1999 ). For example, exposures to secondhand smoke across the full life span may be of interest for lung cancer, while only more recent exposures may be relevant to the exacerbation of asthma. For CHD , both temporally remote and current exposures may affect risk. Assessments of exposures are further complicated by the multiplicity of environments where exposures take place and the difficulty of characterizing the exposure in some locations, such as public places or workplaces. Additionally, exposures probably vary qualitatively and quantitatively over time and across locations because of temporal changes and geographic differences in smoking patterns.

Nonetheless, researchers have used a variety of approaches for exposure assessments in epidemiologic studies of adverse health effects from involuntary smoking. Several core concepts that are fundamental to these approaches are illustrated in Figure 1.1 ( Samet and Jaakkola 1999 ). Cigarette smoking is, of course, the source of most secondhand smoke in the United States, followed by pipes, cigars, and other products. Epidemiologic studies generally focus on assessing the exposure, which is the contact with secondhand smoke. The concentrations of secondhand smoke components in a space depend on the number of smokers and the rate at which they are smoking, the volume into which the smoke is distributed, the rate at which the air in the space exchanges with uncontaminated air, and the rate at which the secondhand smoke is removed from the air. Concentration, exposure, and dose differ in their definitions, although the terms are sometimes used without sharp distinctions. However, surrogate indicators that generally describe a source of exposure may also be used to assess the exposure, such as marriage to a smoker or the number of cigarettes smoked in the home. Biomarkers can provide an indication of an exposure or possibly the dose, but for secondhand smoke they are used for recent exposure only.

The determinants of exposure, dose, and biologically effective dose that underlie the development of health effects from smoking. Source: Samet and Jaakkola (more...)

People are exposed to secondhand smoke in a number of different places, often referred to as “microenvironments” ( NRC 1991 ). A microenvironment is a definable location that has a constant concentration of the contaminant of interest, such as secondhand smoke, during the time that a person is there. Some key microenvironments for secondhand smoke include the home, the workplace, public places, and transportation environments ( Klepeis 1999 ). Based on the microenvironmental model, total exposure can be estimated as the weighted average of the concentrations of secondhand smoke or indicator compounds, such as nicotine, in the microenvironments where time is spent; the weights are the time spent in each microenvironment. Klepeis (1999) illustrates the application of the microenvironmental model with national data from the National Human Activity Pattern Survey conducted by the EPA . His calculations yield an overall estimate of exposure to airborne particles from smoking and of the contributions to this exposure from various microenvironments.

Much of the epidemiologic evidence addresses the consequences of an exposure in a particular microenvironment, such as the home (spousal smoking and lung cancer risk or maternal smoking and risk for asthma exacerbation), or the workplace (exacerbation of asthma by the presence of smokers). Some studies have attempted to cover multiple microenvironments and to characterize exposures over time. For example, in the multicenter study of secondhand smoke exposure and lung cancer carried out in the United States, Fontham and colleagues (1994) assessed exposures during childhood, in workplaces, and at home during adulthood. Questionnaires that assess exposures have been the primary tool used in epidemiologic studies of secondhand smoke and disease. Measurement of biomarkers has been added in some studies, either as an additional and complementary exposure assessment approach or for validating questionnaire responses. Some studies have also measured components of secondhand smoke in the air.

Questionnaires generally address sources of exposure in microenvironments and can be tailored to address the time period of interest. Questionnaires represent the only approach that can be used to assess exposures retrospectively over a life span, because available biomarkers only reflect exposures over recent days or, at most, weeks. Questionnaires on secondhand smoke exposure have been assessed for their reliability and validity, generally based on comparisons with either biomarker or air monitoring data as the “gold” standard ( Jaakkola and Jaakkola 1997 ). Two studies evaluated the reliability of questionnaires on lifetime exposures ( Pron et al. 1988 ; Coultas et al. 1989 ). Both showed a high degree of repeatability for questions concerning whether a spouse had smoked, but a lower reliability for responses concerning the quantitative aspects of an exposure. Emerson and colleagues (1995) evaluated the repeatability of information from parents of children with asthma. They found a high reliability for parent-reported tobacco use and for the number of cigarettes to which the child was exposed in the home during the past week.

To assess validity, questionnaire reports of current or recent exposures have been compared with levels of cotinine and other biomarkers. These studies tend to show a moderate correlation between levels of cotinine and questionnaire indicators of exposures ( Kawachi and Colditz 1996 ; Cal/EPA 1997 ; Jaakkola and Jaakkola 1997 ). However, cotinine levels reflect not only exposure but metabolism and excretion ( Benowitz 1999 ). Consequently, exposure is only one determinant of variation in cotinine levels among persons; there also are individual variations in metabolism and excretion rates. In spite of these sources of variability, mean levels of cotinine vary as anticipated across categories of self-reported exposures ( Cal/EPA 1997 ; Jaakkola and Jaakkola 1997 ), and self-reported exposures are moderately associated with measured levels of markers ( Cal/EPA 1997 ; Jaakkola and Jaakkola 1997 ).

Biomarkers are also used for assessing exposures to secondhand smoke. A number of biomarkers are available, but they vary in their specificity and in the dynamics of the temporal relationship between the exposure and the marker level ( Cal/EPA 1997 ; Benowitz 1999 ). These markers include specific tobacco smoke components (nicotine) or metabolites (cotinine and tobacco-specific nitrosamines), nonspecific biomarkers (thiocyanate and CO ), adducts with tobacco smoke components or metabolites (4-amino-biphenyl hemoglobin adducts, benzo[ a ]pyrene DNA adducts, and polycyclic aromatic hydrocarbon albumin adducts), and nonspecific assays (urinary mutagenicity). Cotinine has been the most widely used biomarker, primarily because of its specificity, half-life, and ease of measurement in body fluids (e. g ., urine, blood, and saliva). Biomarkers are discussed in detail in Chapter 3 (Assessment of Exposure to Secondhand Smoke).

Some epidemiologic studies have also incorporated air monitoring, either direct personal sampling or the indirect approach based on the microenvironmental model. Nicotine, present in the gas phase of secondhand smoke, can be monitored passively with a special filter or actively using a pump and a sorbent. Hammond and Leaderer (1987) first described a diffusion monitor for the passive sampling of nicotine in 1987; this device has now been widely used to assess concentrations in different environments and to study health effects. Airborne particles have also been measured using active monitoring devices.

Each of these approaches for assessing exposures has strengths and limitations, and preference for one over another will depend on the research question and its context ( Jaakkola and Jaakkola 1997 ; Jaakkola and Samet 1999 ). Questionnaires can be used to characterize sources of exposures, such as smoking by parents. With air concentrations of markers and time-activity information, estimates of secondhand smoke exposures can be made with the microenvironmental model. Biomarkers provide exposure measures that reflect the patterns of exposure and the kinetics of the marker; the cotinine level in body fluids, for example, reflects an exposure during several days. Air monitoring may be useful for validating measurements of exposure. Exposure assessment strategies are matched to the research question and often employ a mixture of approaches determined by feasibility and cost constraints.

Misclassification of Secondhand Smoke Exposure

Misclassification may occur when classifying exposures, outcomes, confounding factors, or modifying factors. Misclassification may be differential on either exposure or outcome, or it may be random ( Armstrong et al. 1992 ). Differential or nonrandom misclassification may either increase or decrease estimates of effect, while random misclassification tends to reduce the apparent effect and weaken the relationship of exposure with disease risk. In studies of secondhand smoke and disease risk, exposure misclassification has been a major consideration in the interpretation of the evidence, although misclassification of health outcome measures has not been a substantial issue in this research. The consequences for epidemiologic studies of misclassification in general are well established ( Rothman and Greenland 1998 ).

An extensive body of literature on the classification of exposures to secondhand smoke is reviewed in this and other chapters, as well as in some publications on the consequences of misclassification ( Wu 1999 ). Two general patterns of exposure misclassification are of concern to secondhand smoke: (1) random misclassification that is not differential by the presence or absence of the health outcome and (2) systematic misclassification that is differential by the health outcome. In studying the health effects of secondhand smoke in adults, there is a further concern as to the classification of the active smoking status (never, current, or former smoking); in studies of children, the accuracy of secondhand smoke exposure classification is the primary methodologic issue around exposure assessment, but unreported active smoking by adolescents is also a concern.

With regard to random misclassification of secondhand smoke exposures, there is an inherent degree of unavoidable measurement error in the exposure measures used in epidemiologic studies. Questionnaires generally assess contact with sources of an exposure (e. g ., smoking in the home or work-place) and cannot capture all exposures nor the intensity of exposures; biomarkers provide an exposure index for a particular time window and have intrinsic variability. Some building-related factors that determine an exposure cannot be assessed accurately by a questionnaire, such as the rate of air exchange and the size of the microenvironment where time is spent, nor can concentrations be assessed accurately by subjective reports of the perceived level of tobacco smoke. In general, random misclassification of exposures tends to reduce the likelihood that studies of secondhand smoke exposure will find an effect. This type of misclassification lessens the contrast between exposure groups, because some truly exposed persons are placed in the unexposed group and some truly unexposed persons are placed in the exposed group. Differential misclassification, also a concern, may increase or decrease associations, depending on the pattern of misreporting.

One particular form of misclassification has been raised with regard to secondhand smoke exposure and lung cancer: the classification of some current or former smokers as lifetime nonsmokers ( USEPA 1992 ; Lee and Forey 1995 ; Hackshaw et al. 1997 ; Wu 1999 ). The resulting bias would tend to increase the apparent association of secondhand smoke with lung cancer, if the misclassified active smokers are also more likely to be classified as involuntary smokers. Most studies of lung cancer and secondhand smoke have used spousal smoking as a main exposure variable. As smoking tends to aggregate between spouses (smokers are more likely to marry smokers), misclassification of active smoking would tend to be differential on the basis of spousal smoking (the exposure under investigation). Because active smoking is strongly associated with increased disease risk, greater misclassification of an actively smoking spouse as a non-smoker among spouses of smokers compared with spouses of nonsmokers would lead to risk estimates for spousal smoking that are biased upward by the effect of active smoking. This type of misclassification is also relevant to studies of spousal exposure and CHD risk or other diseases also caused by active smoking, although the potential for bias is less because the association of active smoking with CHD is not as strong as with lung cancer.

There have been a number of publications on this form of misclassification. Wu (1999) provides a review, and Lee and colleagues (2001) offer an assessment of potential consequences. A number of models have been developed to assess the extent of bias resulting from the misclassification of active smokers as lifetime nonsmokers ( USEPA 1992 ; Hackshaw et al. 1997 ). These models incorporate estimates of the rate of misclassification, the degree of aggregation of smokers by marriage, the prevalence of smoking in the population, and the risk of lung cancer in misclassified smokers ( Wu 1999 ). Although debate about this issue continues, analyses show that estimates of upward bias from misclassifying active smokers as lifetime nonsmokers cannot fully explain the observed increase in risk for lung cancer among lifetime non-smokers married to smokers ( Hackshaw et al. 1997 ; Wu 1999 ).

There is one additional issue related to exposure misclassification. During the time the epidemiologic studies of secondhand smoke have been carried out, exposure has been widespread and almost unavoidable. Therefore, the risk estimates may be biased downward because there are no truly unexposed persons. The 1986 Surgeon General’s report recognized this methodologic issue and noted the need for further data on population exposures to secondhand smoke ( USDHHS 1986 ). This bias was also recognized in the 1986 report of the NRC , and an adjustment for this misclassification was made to the lung cancer estimate ( NRC 1986 ). Similarly, the 1992 report of the EPA commented on background exposure and made an adjustment ( USEPA 1992 ). Some later studies have attempted to address this issue; for example, in a case-control study of active and involuntary smoking and breast cancer in Switzerland, Morabia and colleagues (2000) used a questionnaire to assess exposure and identified a small group of lifetime nonsmokers who also reported no exposure to secondhand smoke. With this subgroup of controls as the reference population, the risks of secondhand smoke exposure were substantially greater for active smoking than when the full control population was used.

This Surgeon General’s report further addresses specific issues of exposure misclassification when they are relevant to the health outcome under consideration.

Use of Meta-Analysis

Meta-analysis refers to the process of evaluating and combining a body of research literature that addresses a common question. Meta-analysis is composed of qualitative and quantitative components. The qualitative component involves the systematic identification of all relevant investigations, a systematic assessment of their characteristics and quality, and the decision to include or exclude studies based on predetermined criteria. Consideration can be directed toward sources of bias that might affect the findings. The quantitative component involves the calculation and display of study results on common scales and, if appropriate, the statistical combination of these results across studies and an exploration of the reasons for any heterogeneity of findings. Viewing the findings of all studies as a single plot provides insights into the consistency of results and the precision of the studies considered. Most meta-analyses are based on published summary results, although they are most powerful when applied to data at the level of individual participants. Meta-analysis is most widely used to synthesize evidence from randomized clinical trials, sometimes yielding findings that were not evident from the results of individual studies. Meta-analysis also has been used extensively to examine bodies of observational evidence.

Beginning with the 1986 NRC report, meta-analysis has been used to summarize the evidence on involuntary smoking and health. Meta-analysis was central to the 1992 EPA risk assessment of secondhand smoke, and a series of meta-analyses supported the conclusions of the 1998 report of the Scientific Committee on Tobacco and Health in the United Kingdom. The central role of meta-analysis in interpreting and applying the evidence related to involuntary smoking and disease has led to focused criticisms of the use of meta-analysis in this context. Several papers that acknowledged support from the tobacco industry have addressed the epidemiologic findings for lung cancer, including the selection and quality of the studies, the methods for meta-analysis, and dose-response associations ( Fleiss and Gross 1991 ; Tweedie and Mengersen 1995 ; Lee 1998 , 1999 ). In a lawsuit brought by the tobacco industry against the EPA, the 1998 decision handed down by Judge William L . Osteen, Sr., in the North Carolina Federal District Court criticized the approach EPA had used to select studies for its meta-analysis and criticized the use of 90 percent rather than 95 percent confidence intervals for the summary estimates ( Flue-Cured Tobacco Cooperative Stabilization Corp. v. United States Environmental Protection Agency , 857 F. Supp. 1137 [M.D.N.C. 1993]). In December 2002, the 4th U.S. Circuit Court of Appeals threw out the lawsuit on the basis that tobacco companies cannot sue the EPA over its secondhand smoke report because the report was not a final agency action and therefore not subject to court review ( Flue-Cured Tobacco Cooperative Stabilization Corp. v. The United States Environmental Protection Agency , No. 98–2407 [4th Cir., December 11, 2002], cited in 17.7 TPLR 2.472 [2003]).

Recognizing that there is still an active discussion around the use of meta-analysis to pool data from observational studies (versus clinical trials), the authors of this Surgeon General’s report used this methodology to summarize the available data when deemed appropriate and useful, even while recognizing that the uncertainty around the meta-analytic estimates may exceed the uncertainty indicated by conventional statistical indices, because of biases either within the observational studies or produced by the manner of their selection. However, a decision to not combine estimates might have produced conclusions that are far more uncertain than the data warrant because the review would have focused on individual study results without considering their overall pattern, and without allowing for a full accounting of different sample sizes and effect estimates.

The possibility of publication bias has been raised as a potential limitation to the interpretation of evidence on involuntary smoking and disease in general, and on lung cancer and secondhand smoke exposure specifically. A 1988 paper by Vandenbroucke used a descriptive approach, called a “funnel plot,” to assess the possibility that publication bias affected the 13 studies considered in a review by Wald and colleagues (1986) . This type of plot characterizes the relationship between the magnitude of estimates and their precision. Vandenbroucke suggested the possibility of publication bias only in reference to the studies of men. Bero and colleagues (1994) concluded that there had not been a publication bias against studies with statistically significant findings, nor against the publication of studies with nonsignificant or mixed findings in the research literature. The researchers were able to identify only five unpublished “negative” studies, of which two were dissertations that tend to be delayed in publication. A subsequent study by Misakian and Bero (1998) did find a delay in the publication of studies with nonsignificant results in comparison with studies having significant results; whether this pattern has varied over the several decades of research on secondhand smoke was not addressed. More recently, Copas and Shi (2000) assessed the 37 studies considered in the meta-analysis by Hackshaw and colleagues (1997) for publication bias. Copas and Shi (2000) found a significant correlation between the estimated risk of exposure and sample size, such that smaller studies tended to have higher values. This pattern suggests the possibility of publication bias. However, using a funnel plot of the same studies, Lubin (1999) found little evidence for publication bias.

On this issue of publication bias, it is critical to distinguish between indirect statistical arguments and arguments based on actual identification of previously unidentified research. The strongest case against substantive publication bias has been made by researchers who mounted intensive efforts to find the possibly missing studies; these efforts have yielded little nothing that would alter published conclusions ( Bero et al. 1994 ; Glantz 2000 ). Presumably because this exposure is a great public health concern, the findings of studies that do not have statistically significant outcomes continue to be published ( Kawachi and Colditz 1996 ).

The quantitative results of the meta-analyses, however, were not determinate in making causal inferences in this Surgeon General’s report. In particular, the level of statistical significance of estimates from the meta-analyses was not a predominant factor in making a causal conclusion. For that purpose, this report relied on the approach and criteria set out in the 1964 and 2004 reports of the Surgeon General, which involved judgments based on an array of quantitative and qualitative considerations that included the degree of heterogeneity in the designs of the studies that were examined. Sometimes this heterogeneity limits the inference from meta-analysis by weakening the rationale for pooling the study results. However, the availability of consistent evidence from heterogenous designs can strengthen the meta-analytic findings by making it unlikely that a common bias could persist across different study designs and populations.

Confounding

Confounding, which refers in this context to the mixing of the effect of another factor with that of secondhand smoke, has been proposed as an explanation for associations of secondhand smoke with adverse health consequences. Confounding occurs when the factor of interest (secondhand smoke) is associated in the data under consideration with another factor (the confounder) that, by itself, increases the risk for the disease ( Rothman and Greenland 1998 ). Correlates of secondhand smoke exposures are not confounding factors unless an exposure to them increases the risk of disease. A factor proposed as a potential confounder is not necessarily an actual confounder unless it fulfills the two elements of the definition. Although lengthy lists of potential confounding factors have been offered as alternatives to direct associations of secondhand smoke exposures with the risk for disease, the factors on these lists generally have not been shown to be confounding in the particular data of interest.

The term confounding also conveys an implicit conceptualization as to the causal pathways that link secondhand smoke and the confounding factor to disease risk. Confounding implies that the confounding factor has an effect on risk that is independent of secondhand smoke exposure. Some factors considered as potential confounders may, however, be in the same causal pathway as a secondhand smoke exposure. Although socioeconomic status ( SES ) is often cited as a potential confounding factor, it may not have an independent effect but can affect disease risk through its association with secondhand smoke exposure ( Figure 1.2 ). This figure shows general alternative relationships among SES, secondhand smoke exposure, and risk for an adverse effect. SES may have a direct effect, or it may indirectly exert its effect through an association with secondhand smoke exposure, or it may confound the relationship between secondhand smoke exposure and disease risk. To control for SES as a potential confounding factor without considering underlying relationships may lead to incorrect risk estimates. For example, controlling for SES would not be appropriate if it is a determinant of secondhand smoke exposure but has no direct effect.

Model for socioeconomic status (SES) and secondhand smoke (SHS) exposure. Arrows indicate directionality of association.

Nonetheless, because the health effects of involuntary smoking have other causes, the possibility of confounding needs careful exploration when assessing associations of secondhand smoke exposure with adverse health effects. In addition, survey data from the last several decades show that secondhand smoke exposure is associated with correlates of lifestyle that may influence the risk for some health effects, thus increasing concerns for the possibility of confounding ( Kawachi and Colditz 1996 ). Survey data from the United States ( Matanoski et al. 1995 ) and the United Kingdom ( Thornton et al. 1994 ) show that adults with secondhand smoke exposures generally tend to have less healthful lifestyles. However, the extent to which these patterns of association can be generalized, either to other countries or to the past, is uncertain.

The potential bias from confounding varies with the association of the confounder to secondhand smoke exposures in a particular study and to the strength of the confounder as a risk factor. The importance of confounding to the interpretation of evidence depends further on the magnitude of the effect of secondhand smoke on disease. As the strength of an association lessens, confounding as an alternative explanation for an association becomes an increasing concern. In prior reviews, confounding has been addressed either quantitatively ( Hackshaw et al. 1997 ) or qualitatively ( Cal/EPA 1997 ; Thun et al. 1999 ). In the chapters in this report that focus on specific diseases, confounding is specifically addressed in the context of potential confounding factors for the particular diseases.

  • Tobacco Industry Activities

The evidence on secondhand smoke and disease risk, given the public health and public policy implications, has been reviewed extensively in the published peer-reviewed literature and in evaluations by a number of expert panels. In addition, the evidence has been criticized repeatedly by the tobacco industry and its consultants in venues that have included the peer-reviewed literature, public meetings and hearings, and scientific symposia that included symposia sponsored by the industry. Open criticism in the peer-reviewed literature can strengthen the credibility of scientific evidence by challenging researchers to consider the arguments proposed by critics and to rebut them.

Industry documents indicate that the tobacco industry has engaged in widespread activities, however, that have gone beyond the bounds of accepted scientific practice ( Glantz 1996 ; Ong and Glantz 2000 , 2001 ; Rampton and Stauber 2000 ; Yach and Bialous 2001 ; Hong and Bero 2002 ; Diethelm et al. 2004 ). Through a variety of organized tactics, the industry has attempted to undermine the credibility of the scientific evidence on secondhand smoke. The industry has funded or carried out research that has been judged to be biased, supported scientists to generate letters to editors that criticized research publications, attempted to undermine the findings of key studies, assisted in establishing a scientific society with a journal, and attempted to sustain controversy even as the scientific community reached consensus ( Garne et al. 2005 ). These tactics are not a topic of this report, but to the extent that the scientific literature has been distorted, they are addressed as the evidence is reviewed. This report does not specifically identify tobacco industry sponsorship of publications unless that information is relevant to the interpretation of the findings and conclusions.

  • Armstrong BK, White E, Saracci R, editors. Monographs in Epidemiology and Biostatistics. Vol. 21. New York: Oxford University Press; 1992. Principles of Exposure Measurement in Epidemiology.
  • Benowitz NL. Biomarkers of environmental tobacco smoke. Environmental Health Perspectives. 1999; 107 (Suppl 2):349–55. [ PMC free article : PMC1566286 ] [ PubMed : 10350520 ]
  • Bero LA, Glantz SA, Rennie D. Publication bias and public health policy on environmental tobacco smoke. Journal of the American Medical Association. 1994; 272 (2):133–6. [ PubMed : 8015124 ]
  • California Environmental Protection Agency. Health Effects of Exposure to Environmental Tobacco Smoke. Sacramento (CA): California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, Reproductive and Cancer Hazard Assessment Section and Air Toxicology and Epidemiology Section; 1997.
  • California Environmental Protection Agency. Part B: Health Effects. Sacramento (CA): California Environmental Protection Agency, Office of Environmental Health Hazard Assessment; 2005. Proposed Identification of Environmental Tobacco Smoke as a Toxic Air Contaminant.
  • Copas JB, Shi JQ. Reanalysis of epidemiological evidence on lung cancer and passive smoking. British Medical Journal. 2000; 320 (7232):417–8. [ PMC free article : PMC27286 ] [ PubMed : 10669446 ]
  • Coultas DB, Peake GT, Samet JM. Questionnaire assessment of lifetime and recent exposure to environmental tobacco smoke. American Journal of Epidemiology. 1989; 130 (2):338–47. [ PubMed : 2750729 ]
  • Diethelm PA, Rielle JC, McKee M.The whole truth and nothing but the truth? The research that Phillip Morris did not want you to see. Nov 11, 2004. [accessed: January 6, 2005]. http://image ​.thelancet ​.com/extras/03art7306web.pdf [ PubMed : 15993237 ]
  • Emerson JA, Hovell MF, Meltzer SB, Zakarian JM, Hofstetter CR, Wahlgren DR, Leaderer BP, Meltzer EO. The accuracy of environmental tobacco smoke exposure measures among asthmatic children. Journal of Clinical Epidemiology. 1995; 48 (10):1251–9. [ PubMed : 7561987 ]
  • Fleiss JL, Gross AJ. Meta-analysis in epidemiology, with special reference to studies of the association between exposure to environmental tobacco smoke and lung cancer: a critique. Journal of Clinical Epidemiology. 1991; 44 (2):127–39. [ PubMed : 1995774 ]
  • Flue-Cured Tobacco Cooperative Stabilization Corp. v. United States Environmental Protection Agency (M.D.N.C. June 22, 1993), cited in 8.2 TPLR 3.97 (1993).
  • Flue-Cured Tobacco Cooperative Stabilization Corp. v. The United States Environmental Protection Agency, No. 98–2407 (4th Cir., December 11, 2002), cited in 17.7 TPLR 2.472 (2003) (Overturning lower court’s decision invalidating EPA’s findings that secondhand smoke is a “known human carcinogen”).
  • Fontham ET, Correa P, Reynolds P, Wu-Williams A, Buffler PA, Greenberg RS, Chen VW, Alterman T, Boyd P, Austin DF, Liff J. Environmental tobacco smoke and lung cancer in nonsmoking women: a multicenter study. Journal of the American Medical Association. 1994; 271 (22):1752–9. [ PubMed : 8196118 ]
  • Garne D, Watson M, Chapman S, Byrne F. Environmental tobacco smoke research published in the journal Indoor and Built Environment and associations with the tobacco industry. Lancet. 2005; 365 (9461):804–9. [ PubMed : 15733724 ]
  • Glantz SA. The ledger of tobacco control. Journal of the American Medical Association. 1996; 276 (11):871–2. [ PubMed : 8782631 ]
  • Glantz SA. Lung cancer and passive smoking: nothing new was said. British Medical Journal. 2000; 321 (7270):1222–3. [ PubMed : 11073523 ]
  • Hackshaw AK, Law MR, Wald NJ. The accumulated evidence on lung cancer and environmental tobacco smoke. British Medical Journal. 1997; 315 (7114):980–8. [ PMC free article : PMC2127653 ] [ PubMed : 9365295 ]
  • Hammond SK, Leaderer BP. A diffusion monitor to measure exposure to passive smoking. Environmental Science & Technology. 1987; 21 (5):494–7. [ PubMed : 22296139 ]
  • Hong MK, Bero LA. How the tobacco industry responded to an influential study of the health effects of secondhand smoke. British Medical Journal. 2002; 325 (7377):1413–6. [ PMC free article : PMC1124865 ] [ PubMed : 12480862 ]
  • International Agency for Research on Cancer. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans: Tobacco Smoking. Vol. 38. Lyon (France): International Agency for Research on Cancer; 1986.
  • International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Tobacco Smoke and Involuntary Smoking. Vol. 83. Lyon (France): International Agency for Research on Cancer; 2004. [ PMC free article : PMC4781536 ] [ PubMed : 15285078 ]
  • Jaakkola MS, Jaakkola JJ. Assessment of exposure to environmental tobacco smoke. European Respiratory Journal. 1997; 10 (10):2384–97. [ PubMed : 9387970 ]
  • Jaakkola MS, Samet JM. Environmental tobacco smoke: risk assessment. Environmental Health Perspectives. 1999; 107 (Suppl 6):823–904. [ PMC free article : PMC1566195 ] [ PubMed : 10592138 ]
  • Kawachi I, Colditz GA. Invited commentary: confounding, measurement error, and publication bias in studies of passive smoking. American Journal of Epidemiology. 1996; 144 (10):909–15. [ PubMed : 8916501 ]
  • Klepeis NE. An introduction to the indirect exposure assessment approach: modeling human exposure using microenvironmental measurements and the recent National Human Activity Pattern Survey. Environmental Health Perspectives. 1999; 107 (Suppl 2):365–74. [ PMC free article : PMC1566279 ] [ PubMed : 10350522 ]
  • Lee PN. Difficulties in assessing the relationship between passive smoking and lung cancer. Statistical Methods in Medical Research. 1998; 7 (2):137–63. [ PubMed : 9654639 ]
  • Lee PN. Simple methods for checking for possible errors in reported odds ratios, relative risks and confidence intervals. Statistics in Medicine. 1999; 18 (15):1973–81. [ PubMed : 10440880 ]
  • Lee PN, Forey BA. Misclassification of smoking habits as determined by cotinine or by repeated self-report—summary of evidence from 42 studies. Journal of Smoking-Related Diseases. 1995; 6 :109–29.
  • Lee PN, Forey B, Fry JS. Revisiting the association between environmental tobacco smoke exposure and lung cancer risk. III: Adjusting for the biasing effect of misclassification of smoking habits. Indoor and Built Environment. 2001; 10 (6):384–98.
  • Lubin JH. Estimating lung cancer risk with exposure to environmental tobacco smoke. Environmental Health Perspectives. 1999; 107 (Suppl 6):879–83. [ PMC free article : PMC1566203 ] [ PubMed : 10592146 ]
  • Matanoski G, Kanchanaraksa S, Lantry D, Chang Y. Characteristics of nonsmoking women in NHANES I and NHANES I Epidemiologic Follow-up Study with exposure to spouses who smoke. American Journal of Epidemiology. 1995; 142 (2):149–57. [ PubMed : 7598114 ]
  • Misakian AL, Bero LA. Publication bias and research on passive smoking: comparison of published and unpublished studies. Journal of the American Medical Association. 1998; 280 (3):250–3. [ PubMed : 9676672 ]
  • Morabia A, Bernstein MS, Bouchardy I, Kurtz J, Morris MA. Breast cancer and active and passive smoking: the role of the N -acetyltransferase 2 genotype. American Journal of Epidemiology. 2000; 152 (3):226–32. [ PubMed : 10933269 ]
  • National Health and Medical Research Council. A scientific information paper. Canberra (Commonwealth of Australia): Canberra ACT; 1997. The Health Effects of Passive Smoking.
  • National Research Council. Environmental Tobacco Smoke: Measuring Exposures and Assessing Health Effects. Washington: National Academy Press; 1986. [ PubMed : 25032469 ]
  • National Research Council. Human Exposure Assessment for Airborne Pollutants: Advances and Opportunities. Washington: National Academy Press; 1991.
  • Ong EK, Glantz SA. Tobacco industry efforts subverting International Agency for Research on Cancer’s second-hand smoke study. Lancet. 2000; 355 (9211):1253–9. [ PubMed : 10770318 ]
  • Ong EK, Glantz SA. Constructing “sound science” and “good epidemiology”: tobacco, lawyers, and public relations rms. American Journal of Public Health. 2001; 91 (11):1749–57. [ PMC free article : PMC1446868 ] [ PubMed : 11684593 ]
  • Pron GE, Burch JD, Howe GR, Miller AB. The reliability of passive smoking histories reported in a case-control study of lung cancer. American Journal of Epidemiology. 1988; 127 (2):267–73. [ PubMed : 3337082 ]
  • Rampton S, Stauber J. Trust Us, We’re Experts: How Industry Manipulates Science and Gambles with Your Future. Los Angeles: J.P. Tarcher; 2000.
  • Rothman KJ, Greenland S. Modern Epidemiology. 2nd ed. Philadelphia: Lippincott-Raven; 1998.
  • Samet JM, Jaakkola JJK. The epidemiologic approach to investigating outdoor air pollution. In: Holgate ST, Samet JM, Koren HS, Maynard RL, editors. Air Pollution and Health. San Diego: Academic Press; 1999. pp. 431–60.
  • Scientific Committee on Tobacco and Health . Report of the Scientific Committee on Tobacco and Health. London: The Stationery Office; 1998.
  • Thornton A, Lee P, Fry J. Differences between smokers, ex-smokers, passive smokers and non-smokers. Journal of Clinical Epidemiology. 1994; 47 (10):1143–62. [ PubMed : 7722548 ]
  • Thun M, Henley J, Apicella L. Epidemiologic studies of fatal and nonfatal cardiovascular disease and ETS exposure from spousal smoking. Environmental Health Perspectives. 1999; 107 (Suppl 6):841–6. [ PMC free article : PMC1566204 ] [ PubMed : 10592140 ]
  • Tweedie RL, Mengersen KL. Meta-analytic approaches to dose-response relationships, with application in studies of lung cancer and exposure to environmental tobacco smoke. Statistics in Medicine. 1995; 14 (5–7):545–69. [ PubMed : 7792447 ]
  • US Department of Health and Human Services . The Health Consequences of Smoking: Cancer A Report of the Surgeon General. Rockville (MD): U.S. Department of Health and Human Services, Public Health Service, Office on Smoking and Health; 1982. DHHS Publication No. (PHS) 82–50179.
  • US Department of Health and Human Services. A Report of the Surgeon General. Rockville (MD): U.S. Department of Health and Human Services, Public Health Service, Office on Smoking and Health; 1984. The Health Consequences of Smoking: Chronic Obstructive Lung Disease. DHHS Publication No. (PHS) 84–50205.
  • US Department of Health and Human Services. A Report of the Surgeon General. Rockville (MD): U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, Center for Health Promotion and Education, Office on Smoking and Health; 1986. The Health Consequences of Involuntary Smoking. DHHS Publication No. (CDC) 87–8398.
  • US Department of Health and Human Services. A Report of the Surgeon General. Atlanta: US Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 1994. Preventing Tobacco Use Among Young People.
  • US Department of Health and Human Services. A Report of the Surgeon General. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 1998. Tobacco Use Among US Racial/Ethnic Minority Groups—African Americans, American Indians and Alaska Natives, Asian Americans and Pacific Islanders, and Hispanics.
  • US Department of Health and Human Services. A Report of the Surgeon General. Rockville (MD): U.S. Department of Health and Human Services, Public Health Service, Office of the Surgeon General; 2001. Women and Smoking.
  • US Department of Health and Human Services. The Health Consequences of Smoking: A Report of the Surgeon General. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 2004.
  • US Department of Health, Education, and Welfare. Smoking and Health: Report of the Advisory Committee to the Surgeon General of the Public Health Service. Washington: U.S. Department of Health, Education, and Welfare, Public Health Service, Center for Disease Control; 1964. PHS Publication No. 1103.
  • US Department of Health, Education, and Welfare. A Report of the Surgeon General: 1972. Washington: U.S. Department of Health, Education, and Welfare, Public Health Service, Health Services and Mental Health Administration; 1972. The Health Consequences of Smoking. DHEW Publication No. (HSM) 72–7516.
  • US Department of Health, Education, and Welfare. A Report of the Surgeon General, 1975. Washington: U.S. Department of Health, Education, and Welfare, Public Health Service, Center for Disease Control; 1975. The Health Consequences of Smoking. DHEW Publication No. (CDC) 77–8704.
  • US Department of Health, Education, and Welfare. A Report of the Surgeon General. Washington: U.S. Department of Health, Education, and Welfare, Public Health Service, Office of the Assistant Secretary for Health, Office of Smoking and Health; 1979. Smoking and Health. DHEW Publication No. (PHS) 79–50066.
  • U.S. Environmental Protection Agency. Respiratory Health Effects of Passive Smoking: Lung Cancer and Other Disorders. Washington: U.S. Environmental Protection Agency, Office of Research and Development, Office of Air Radiation; 1992. Report No. EPA/600/6-90/0006F.
  • Vandenbroucke JP. Passive smoking and lung cancer: a publication bias? British Medical Journal (Clinical Research Edition). 1988; 296 (6619):391–2. [ PMC free article : PMC2544973 ] [ PubMed : 3125912 ]
  • Wald NJ, Nanchahal K, Thompson SG, Cuckle HS. Does breathing other people’s tobacco smoke cause lung cancer? British Medical Journal (Clinical Research Edition). 1986; 293 (6556):1217–22. [ PMC free article : PMC1341990 ] [ PubMed : 3096439 ]
  • World Health Organization. International Consultation on Environmental Tobacco Smoke (ETS) and Child Health: Consultation Report. Geneva: World Health Organization; 1999.
  • Wu AH. Exposure misclassification bias in studies of environmental tobacco smoke and lung cancer. Environmental Health Perspectives. 1999; 107 (Suppl 6):873–7. [ PMC free article : PMC1566193 ] [ PubMed : 10592145 ]
  • Yach D, Bialous SA. Junking science to promote tobacco. American Journal of Public Health. 2001; 91 (11):1745–8. [ PMC free article : PMC1446867 ] [ PubMed : 11684592 ]
  • Cite this Page Office on Smoking and Health (US). The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US); 2006. 1, Introduction, Summary, and Conclusions.
  • PDF version of this title (20M)
  • Disable Glossary Links

In this Page

Other titles in these collections.

  • Publications and Reports of the Surgeon General
  • Health Services/Technology Assessment Text (HSTAT)

Related information

  • PMC PubMed Central citations
  • PubMed Links to PubMed

Recent Activity

  • Introduction, Summary, and Conclusions - The Health Consequences of Involuntary ... Introduction, Summary, and Conclusions - The Health Consequences of Involuntary Exposure to Tobacco Smoke

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

Persuasive Essay Guide

Persuasive Essay About Smoking

Caleb S.

Persuasive Essay About Smoking - Making a Powerful Argument with Examples

Persuasive essay about smoking

People also read

A Comprehensive Guide to Writing an Effective Persuasive Essay

200+ Persuasive Essay Topics to Help You Out

Learn How to Create a Persuasive Essay Outline

30+ Free Persuasive Essay Examples To Get You Started

Read Excellent Examples of Persuasive Essay About Gun Control

How to Write a Persuasive Essay About Covid19 | Examples & Tips

Crafting a Convincing Persuasive Essay About Abortion

Learn to Write Persuasive Essay About Business With Examples and Tips

Check Out 12 Persuasive Essay About Online Education Examples

Are you wondering how to write your next persuasive essay about smoking?

Smoking has been one of the most controversial topics in our society for years. It is associated with many health risks and can be seen as a danger to both individuals and communities.

Writing an effective persuasive essay about smoking can help sway public opinion. It can also encourage people to make healthier choices and stop smoking. 

But where do you begin?

In this blog, we’ll provide some examples to get you started. So read on to get inspired!

Arrow Down

  • 1. What You Need To Know About Persuasive Essay
  • 2. Persuasive Essay Examples About Smoking
  • 3. Argumentative Essay About Smoking Examples
  • 4. Tips for Writing a Persuasive Essay About Smoking

What You Need To Know About Persuasive Essay

A persuasive essay is a type of writing that aims to convince its readers to take a certain stance or action. It often uses logical arguments and evidence to back up its argument in order to persuade readers.

It also utilizes rhetorical techniques such as ethos, pathos, and logos to make the argument more convincing. In other words, persuasive essays use facts and evidence as well as emotion to make their points.

A persuasive essay about smoking would use these techniques to convince its readers about any point about smoking. Check out an example below:

Simple persuasive essay about smoking

Order Essay

Tough Essay Due? Hire Tough Writers!

Persuasive Essay Examples About Smoking

Smoking is one of the leading causes of preventable death in the world. It leads to adverse health effects, including lung cancer, heart disease, and damage to the respiratory tract. However, the number of people who smoke cigarettes has been on the rise globally.

A lot has been written on topics related to the effects of smoking. Reading essays about it can help you get an idea of what makes a good persuasive essay.

Here are some sample persuasive essays about smoking that you can use as inspiration for your own writing:

Persuasive speech on smoking outline

Persuasive essay about smoking should be banned

Persuasive essay about smoking pdf

Persuasive essay about smoking cannot relieve stress

Persuasive essay about smoking in public places

Speech about smoking is dangerous

Persuasive Essay About Smoking Introduction

Persuasive Essay About Stop Smoking

Short Persuasive Essay About Smoking

Stop Smoking Persuasive Speech

Check out some more persuasive essay examples on various other topics.

Argumentative Essay About Smoking Examples

An argumentative essay is a type of essay that uses facts and logical arguments to back up a point. It is similar to a persuasive essay but differs in that it utilizes more evidence than emotion.

If you’re looking to write an argumentative essay about smoking, here are some examples to get you started on the arguments of why you should not smoke.

Argumentative essay about smoking pdf

Argumentative essay about smoking in public places

Argumentative essay about smoking introduction

Check out the video below to find useful arguments against smoking:

Tips for Writing a Persuasive Essay About Smoking

You have read some examples of persuasive and argumentative essays about smoking. Now here are some tips that will help you craft a powerful essay on this topic.

Choose a Specific Angle

Select a particular perspective on the issue that you can use to form your argument. When talking about smoking, you can focus on any aspect such as the health risks, economic costs, or environmental impact.

Think about how you want to approach the topic. For instance, you could write about why smoking should be banned. 

Check out the list of persuasive essay topics to help you while you are thinking of an angle to choose!

Research the Facts

Before writing your essay, make sure to research the facts about smoking. This will give you reliable information to use in your arguments and evidence for why people should avoid smoking.

You can find and use credible data and information from reputable sources such as government websites, health organizations, and scientific studies. 

For instance, you should gather facts about health issues and negative effects of tobacco if arguing against smoking. Moreover, you should use and cite sources carefully.

Paper Due? Why Suffer? That's our Job!

Make an Outline

The next step is to create an outline for your essay. This will help you organize your thoughts and make sure that all the points in your essay flow together logically.

Your outline should include the introduction, body paragraphs, and conclusion. This will help ensure that your essay has a clear structure and argument.

Use Persuasive Language

When writing your essay, make sure to use persuasive language such as “it is necessary” or “people must be aware”. This will help you convey your message more effectively and emphasize the importance of your point.

Also, don’t forget to use rhetorical devices such as ethos, pathos, and logos to make your arguments more convincing. That is, you should incorporate emotion, personal experience, and logic into your arguments.

Introduce Opposing Arguments

Another important tip when writing a persuasive essay on smoking is to introduce opposing arguments. It will show that you are aware of the counterarguments and can provide evidence to refute them. This will help you strengthen your argument.

By doing this, your essay will come off as more balanced and objective, making it more convincing.

Finish Strong

Finally, make sure to finish your essay with a powerful conclusion. This will help you leave a lasting impression on your readers and reinforce the main points of your argument. You can end by summarizing the key points or giving some advice to the reader.

A powerful conclusion could either include food for thought or a call to action. So be sure to use persuasive language and make your conclusion strong.

To conclude,

By following these tips, you can write an effective and persuasive essay on smoking. Remember to research the facts, make an outline, and use persuasive language.

However, don't stress if you need expert help to write your essay! Our professional essay writing service is here for you!

Our persuasive essay writing service is fast, affordable, and trustworthy. 

Try it out today!

AI Essay Bot

Write Essay Within 60 Seconds!

Caleb S.

Caleb S. has been providing writing services for over five years and has a Masters degree from Oxford University. He is an expert in his craft and takes great pride in helping students achieve their academic goals. Caleb is a dedicated professional who always puts his clients first.

Get Help

Paper Due? Why Suffer? That’s our Job!

Keep reading

Persuasive Essay

  • Table of Contents

Volume 10 — August 01, 2013

Article Tools

  • PDF - 441 KB
  • Download citation
  • Este resumen en español
  • Send feedback to PCD
  • Display this article on your Web site

ORIGINAL RESEARCH

The economic impact of smoke-free laws on restaurants and bars in 9 states, navigate this article, introduction, acknowledgments, author information, brett r. loomis, ms; paul r. shafer, ma; martijn van hasselt, phd.

Suggested citation for this article: Loomis BR, Shafer PR, van Hasselt M. The Economic Impact of Smoke-Free Laws on Restaurants and Bars in 9 States. Prev Chronic Dis 2013;10:120327. DOI: http://dx.doi.org/10.5888/pcd10.120327 .

PEER REVIEWED

Introduction Smoke-free air laws in restaurants and bars protect patrons and workers from involuntary exposure to secondhand smoke, but owners often express concern that such laws will harm their businesses. The primary objective of this study was to estimate the association between local smoke-free air laws and economic outcomes in restaurants and bars in 8 states without statewide smoke-free air laws: Alabama, Indiana, Kentucky, Mississippi, Missouri, South Carolina, Texas, and West Virginia. A secondary objective was to examine the economic impact of a 2010 statewide smoke-free restaurant and bar law in North Carolina.

Methods Using quarterly data from 2000 through 2010, we estimated dynamic panel data models for employment and sales in restaurants and bars. The models controlled for smoke-free laws, general economic activity, cigarette sales, and seasonality. We included data from 216 smoke-free cities and counties in the analysis. During the study period, only North Carolina had a statewide law banning smoking in restaurants or bars. Separate models were estimated for each state.

Results In West Virginia, smoke-free laws were associated with a significant increase of approximately 1% in restaurant employment. In the remaining 8 states, we found no significant association between smoke-free laws and employment or sales in restaurants and bars.

Conclusion Results suggest that smoke-free laws did not have an adverse economic impact on restaurants or bars in any of the states studied; they provided a small economic benefit in 1 state. On the basis of these findings, we would not expect a statewide smoke-free law in Alabama, Indiana, Kentucky, Missouri, Mississippi, South Carolina, Texas, or West Virginia to have an adverse economic impact on restaurants or bars in those states.

Top of Page

A total of 29 states and Washington, DC, have laws that prohibit smoking in restaurants and bars (1). Most remaining states without statewide smoke-free laws are home to many cities and counties that have local laws requiring restaurants or bars to be 100% smoke-free. In many of these states, momentum is building to extend the protection offered by local smoke-free laws to all citizens. However, owners of restaurants and bars are concerned that laws prohibiting smoking in their establishments will hurt business. Opponents of smoke-free laws argue that smoke-free policies decrease the number of customers that go to restaurants and bars or the frequency with which they visit those establishments, thus reducing revenue and ultimately, employment.

Research in the past 2 decades has provided clear evidence that smoke-free laws have no adverse effects on the economic performance of restaurants or bars (2–22). Continued expansion of smoke-free laws in the United States would benefit from additional studies demonstrating neutral or even positive effects of such laws on the hospitality industry (2). The primary objective of this study was to estimate the association between local smoke-free air laws and economic outcomes in restaurants and bars in 8 states without statewide smoke-free air laws to obtain information about the likely economic impact of a statewide smoke-free air law in the selected states. The 8 states studied were Alabama, Indiana, Kentucky, Mississippi, Missouri, South Carolina, Texas, and West Virginia. A secondary objective of this study was to examine the economic impact of a 2010 statewide smoke-free restaurant and bar law in North Carolina.

Study design

We estimated dynamic panel data regression models, which used the variation in the presence and restrictiveness of smoke-free air laws over time and across communities, to estimate the average effect of these laws on restaurants and bars in each of the 9 states from 2000 through 2010; we used quarterly data in these calculations. We estimated models for each state separately. Restaurant and bar employment were county-level dependent variables, whereas data on per capita sales outcomes were available at the city level. For the county models, we combined data from all counties for which data were available, whether smoke-free or not, and compared the average effect of smoke-free laws in counties that contain smoke-free communities with counties that have no smoke-free communities. For the city models, we pooled data from all cities with smoke-free laws for which data were available and estimated the average effect of smoke-free laws in those communities.

Selection of study communities

Nine states were included in the study: Alabama, Indiana, Kentucky, Mississippi, Missouri, North Carolina, South Carolina, Texas, and West Virginia. Because our main objective was to assess the likely economic impact of a hypothetical statewide smoke-free law, we chose states that did not have a statewide law at the time of our study; because the Southeast has generally been more resistant to state smoke-free laws, we decided to focus on this region. Thus, Alabama, Indiana, Kentucky, Mississippi, Missouri, South Carolina, Texas, and West Virginia were chosen for 3 reasons: 1) none had a statewide law that prohibited smoking in either restaurants or bars when we conducted our analysis (Indiana adopted a statewide smoke-free law prohibiting smoking in most workplaces, including restaurants but not bars, on July 1, 2012); 2) all had many communities in which local laws prohibited smoking in restaurants and bars; and 3) all were located in or adjacent to the Southeast. North Carolina was included as an example of a southeastern state that had adopted a statewide smoke-free law. North Carolina’s statewide law on smoke-free restaurants and bars went into effect on January 2, 2010. Before then, no North Carolina community had a smoke-free law.

In the selected states, we identified communities with 100% smoke-free laws in restaurants or bars that went into effect during 2000 through 2010 by using a list of smoke-free communities compiled by the American Nonsmokers’ Rights Foundation (23). We identified 254 cities or counties that had laws on smoke-free restaurants or bars; 216 were included in the study. Thirty-eight were excluded because of incomplete or unavailable data.

Economic outcome variables

We used 3 economic outcomes as dependent variables: 1) number of restaurant employees at the county level, 2) number of bar employees at the county level, and 3) restaurant and bar sales at the city level. Quarterly employment data for counties in all 9 states were obtained from the US Bureau of Labor Statistics’ Quarterly Census of Employment and Wages (24) for North American Industrial Classification System (NAICS) codes 7221 (full-service restaurants) and 7224 (drinking establishments). Employment data were not available for all counties. We obtained city-level sales data for smoke-free cities in Missouri and Texas. In Missouri, city sales data were provided for “eating and drinking places” (Standard Industrial Classification [SIC] code 58 from the Missouri Department of Revenue). In Texas, sales data were provided by the Texas Comptroller of Public Accounts; we used the same NAICS codes for city-level data on restaurants and bars as we used for county-level data.

Measurement of smoke-free laws

For the county-level models of restaurant and bar employment in Alabama, Indiana, Kentucky, Mississippi, Missouri, South Carolina, and Texas, we measured smoke-free laws by the percentage of a county’s population that was covered by a smoke-free restaurant or bar law. The regression coefficient for this variable represents the number of restaurant or bar jobs gained or lost for each additional percentage-point of the population that is covered by the smoke-free law. For the county-level models of restaurant and bar employment in North Carolina (which had a statewide law) and West Virginia (which had all county-level laws), we measured smoke-free laws by an indicator variable equal to zero in all time periods preceding implementation of the law and equal to 1 in the time period in which the law took effect and all subsequent periods. The regression coefficient for this variable represents the number of restaurant or bar jobs gained or lost after implementation of the smoke-free law. For the city-level models of restaurant and bar sales, we measured smoke-free laws by an indicator variable equal to zero in all time periods preceding implementation of the law and equal to 1 in the time period in which the law took effect and all subsequent periods. The regression coefficient for this variable represents the change in per capita sales after implementation of the smoke-free law.

Control variables

Employment and sales in restaurants and bars exhibited a high degree of correlation between past and present values. To account for the dynamic nature of employment and sales, we included the lagged value from the previous calendar quarter as a control variable.

It is important to control for general economic activity and conditions that may affect restaurants and bars, independent of the implementation of smoke-free laws. We accomplished this in 2 ways. First, we included a variable for nonsector employment or sales in each model. For models of restaurant or bar employment, “nonsector employment” is the difference between total employment in all industries and employment in restaurants or bars. For models of restaurant or bar sales (or both), “nonsector sales” is the difference between total sales and sales in restaurants and/or bars. “Total sales” refers to sales data obtained from holders of sales or use-tax permits. We did not include sales from businesses that sell only goods that are outside the sales tax base. In general, sales and use taxes are imposed on all retail sales, leases and rentals of most goods, and taxable services. Second, seasonal effects, such as summer or winter tourism, may affect restaurant or bar employment and sales at regular intervals year after year. To account for these effects, we included quarterly seasonal indicator variables in all models.

We also included the annual number of tax-paid per-capita cigarette sales in each state from The Tax Burden on Tobacco (25) to account for potential confounding due to variation in smoking rates. Finally, we controlled for unmeasured differences between counties or cities by including a set of county or city indicator variables.

Statistical analysis

We estimated all employment models and sales models in Missouri by using the ivreg2 command (26) in Stata version 11 (StataCorp LP, College Station, Texas) (27), which estimates a single equation model by using a 2-step feasible generalized methods-of-moments estimator. This estimator is an instrumental variables (IV) estimator, which we used because the nonsector employment and nonsector sales control variables were endogenous. That is, it was likely that unobserved factors simultaneously affected both the outcome variable and the nonsector employment control variable. Failure to account for endogeneity would lead to bias in the ordinary least squares (OLS) regression estimates. The estimator we used was based on identifying a variable (the “instrument”) for each endogenous control, such that it was related to the control but unrelated to remaining unobserved factors. In our study, the chosen instruments were lagged values of either nonsector employment or nonsector sales. To account for the possibility that the regression errors were correlated over time, we calculated standard errors that are robust to both heteroscedasticity and serial correlation of the residuals. In the Texas sales models, the IV estimator failed the weak instrument test (Kleibergen and Paap’s rank statistic [28] via the first-stage F statistic); we therefore used an OLS estimator instead.

In all states except West Virginia, we found no significant association between smoke-free restaurant laws and restaurant employment ( Table 1 ). In West Virginia, we found a significant increase in restaurant employment in smoke-free counties compared with counties that were not smoke-free.

The estimated coefficient of 5.49 (Table 1) implies an increase of 5.49 restaurant jobs after implementation of a county-wide smoke-free law. Each county in West Virginia that adopted a smoke-free law in restaurants had an average of 527 restaurant jobs before the law. Therefore, smoke-free restaurant laws in West Virginia were associated with an average increase of about 1% in restaurant jobs per county. The first-stage F statistics indicated that the instrument (lagged nonrestaurant employment) was strongly related to the endogenous variable (nonrestaurant employment). Among the 9 states, the lowest F statistic value ( F = 208) was for Kentucky, which far exceeds the rule-of-thumb threshold of 10 that is commonly used (29).

In all models, lagged restaurant employment was significant, suggesting that employment in restaurants was highly correlated over time. The coefficients of lagged restaurant employment indicate that employment was moderately (South Carolina, coefficient 0.57) to highly (Texas, coefficient 0.93) persistent from quarter to quarter. Nonrestaurant employment was significant and positive in 3 states: Alabama, North Carolina, and South Carolina. Per capita cigarette sales was significant and negative in 6 of 9 states, suggesting that states with greater amounts of smoking have fewer restaurant jobs on average.

Similar to the results for restaurant employment, lagged bar employment was significant and positive, indicating that bar employment was moderately (South Carolina, 0.62) to highly (Texas, 0.92) persistent from quarter to quarter( Table 2 ). Nonbar employment was significant but positive in only 2 states, Alabama and Missouri. Annual per capita cigarette sales were significant and negative only in North Carolina. The first-stage F statistics again indicated that the instrument was not weak; the minimum value was 182 for Mississippi. We found no significant association between smoke-free bar laws and bar employment in any state.

The first-stage F statistics in the Texas models were low: 1.59 in the restaurant model and 0.06 in the bar model. We found no qualitative differences between the OLS and IV estimates, however. In Missouri and Texas, implementation of a smoke-free air law for bars or restaurants (or both) was not significantly associated with a change in per capita sales ( Table 3 ). In all 3 sales models, per capita sales in the previous period were a significant predictor of per capita sales in the current period.

In this study, we estimated the economic impact of local smoke-free laws in 216 communities in 8 states that did not have statewide smoke-free laws: Alabama, Indiana, Kentucky, Mississippi, Missouri, South Carolina, Texas, and West Virginia. We found no significant association between smoke-free laws and economic outcomes in restaurants and bars in 7 of the 8 states. In West Virginia, restaurant employment increased by a significant 1% after implementation of a smoke-free restaurant law. Based on these findings, we would not expect statewide smoke-free laws to have an adverse economic impact on restaurants or bars in these states. We also examined the association of a statewide smoke-free restaurant and bar law on employment in North Carolina. We found no evidence that North Carolina’s statewide law had affected restaurant or bar employment. This result is consistent with a study that found no impact from North Carolina’s smoke-free law on gross revenues in restaurants or bars (30).

Our findings are consistent with previous studies (2–22) and the conclusions of the US Surgeon General (31), all of which indicate that smoke-free laws do not negatively impact restaurant and bar business. More importantly, smoke-free laws improve both employee and population health. Indeed, averting the adverse health consequences of secondhand smoke exposure among nonsmoking adults and children is the primary goal of any smoke-free policy. Comprehensive smoke-free laws that completely eliminate smoking in indoor public places and workplaces, including restaurants and bars, have been shown to reduce secondhand smoke exposure among nonsmoking hospitality workers (31) and the general population of nonsmokers (32). Such laws have also been shown to reduce sensory and respiratory symptoms and improve lung function in nonsmoking hospitality workers (19), help workers who smoke to quit (31), and may reduce smoking initiation among youth (33).

A strength of this study is that it was based on data from 216 cities and counties and 9 states during an 11-year period; it is the largest economic impact study of smoke-free laws to date. The panel model estimation approach takes advantage of variation across communities over time and controls for general economic activity, tax-paid cigarette sales, seasonality, endogeneity, and autocorrelation. However, it is unlikely that we accounted for every factor that might have affected the restaurant and bar industries in each state. Nonetheless, the consistency of the results across states strengthens the conclusion that smoke-free laws have not had an adverse economic impact on employment and sales in restaurants and bars.

A limitation of this study is that sales data were available for far fewer states and cities or counties than employment data, especially for bars. Additionally, employment data were missing for many counties in each state, which limits the generalizability of the results, particularly for bars. This analysis, like many previous analyses, examined the average economic impact of smoke-free laws on restaurants and bars in an area and did not assess the economic effects of these laws on individual establishments. Finally, the models did not control for spill-over effects either between adjacent communities or between restaurants and bars (2). Spill-over effects may be relevant in communities that require restaurants but not bars to be smoke-free.

Consistent with similar studies, this study found no significant adverse economic effects on restaurants or bars from laws prohibiting smoking in those venues. At the time of this writing, Alabama, Kentucky, Mississippi, Missouri, South Carolina, Texas, and West Virginia did not have statewide laws banning smoking in restaurants and bars; Indiana enacted a statewide law prohibiting smoking in most workplaces, including restaurants but not bars, on July 1, 2012. On the basis of our results, we would not expect restaurants and bars in these states to experience adverse economic consequences should such a statewide smoke-free law be passed. Rather, all citizens would enjoy the health benefits of being protected from exposure to secondhand smoke while patronizing or working in restaurants and bars.

This study was funded by a grant from Pfizer, Inc to the CDC Foundation. RTI International was supported by a contract with the CDC Foundation. Neither Pfizer, Inc, nor CDC Foundation had any role in data collection, analysis, model specification, interpretation of results, decision to publish, or preparation of the manuscript.

Corresponding Author: Brett R. Loomis, MS, RTI International, 3040 Cornwallis Rd, PO Box 12194, Research Triangle Park, NC 27709. Telephone: 919-485-2737. E-mail: [email protected] .

Author Affiliations: Paul R. Shafer, Martijn van Hasselt, RTI International, Research Triangle Park, North Carolina.

  • American Nonsmokers’ Rights Foundation. Overview list — how many smokefree laws? http://www.no-smoke.org/pdf/mediaordlist.pdf. Accessed November 1, 2012.
  • Boles M, Dilley J, Maher JE, Boysun MJ, Reid T. Smoke-free law associated with higher-than-expected taxable retail sales for bars and taverns in Washington State. Prev Chronic Dis 2010;7(4):A79. PubMed
  • Eriksen M, Chaloupka F. The economic impact of clean indoor air laws. CA Cancer J Clin 2007;57(6):367–78. CrossRef PubMed
  • International Agency for Research on Cancer. Biennial report 2008–2009. Lyon (FR): World Health Organization; 2009.
  • Glantz SA, Smith LR. The effect of ordinances requiring smoke-free restaurants on restaurant sales. Am J Public Health 1994;84(7):1081–5. CrossRef PubMed
  • Glantz SA, Smith LR. The effect of ordinances requiring smoke-free restaurants and bars on revenues: a follow-up. Am J Public Health 1997;87(10):1687–93. CrossRef PubMed
  • Hyland A, Cummings KM. Restaurant employment before and after the New York City Smoke-Free Air Act. J Public Health Manag Pract 1999;5(1):22–7. PubMed
  • Hyland A, Tuk J. Restaurant employment boom in New York City. Tob Control 2001;10(2):199. CrossRef PubMed
  • Alpert HR, Carpenter CM, Travers MJ, Connolly GN. Environmental and economic evaluation of the Massachusetts Smoke-Free Workplace Law. J Community Health 2007;32(4):269–81. CrossRef PubMed
  • Pyles MK, Mullineaux DJ, Okoli CT, Hahn EJ. Economic effect of a smoke-free law in a tobacco-growing community. Tob Control 2007;16(1):66–8. CrossRef PubMed
  • Alamar BC, Glantz SA. Smoke-free ordinances increase restaurant profit and value. Contemp Econ Policy 2004;22(4):520–5. CrossRef PubMed
  • Alamar B, Glantz SA. Effect of smoke-free laws on bar value and profits. Am J Public Health 2007;97(8):1400–2. CrossRef PubMed
  • Cowling DW, Bond P. Smoke-free laws and bar revenues in California — the last call. Health Econ 2005;14(12):1273–81. CrossRef PubMed
  • Hyland A, Cummings KM, Nauenberg E. Analysis of taxable sales receipts: was New York City’s Smoke-Free Air Act bad for restaurant business? J Public Health Manag Pract 1999;5(1):14–21. PubMed
  • Glantz SA. Effect of smokefree bar law on bar revenues in California. Tob Control 2000;9(1):111–2. CrossRef PubMed
  • Bartosch WJ, Pope GC. Economic effect of restaurant smoking restrictions on restaurant business in Massachusetts, 1992 to 1998. Tob Control 2002;11(Suppl 2):ii38–42. PubMed
  • Klein EG, Forster JL, Collins NM, Erickson DJ, Toomey TL. Employment change for bars and restaurants following a statewide clean indoor air policy. Am J Prev Med 2010;39(6, Suppl 1):S16–22. CrossRef PubMed
  • Collins NM, Shi Q, Forster JL, Erickson DJ, Toomey TL. Effects of clean indoor air laws on bar and restaurant revenue in Minnesota cities. Am J Prev Med 2010;39(6, Suppl 1):S10–5. CrossRef PubMed
  • Hahn EJ. Smokefree legislation: a review of health and economic outcomes research. Am J Prev Med 2010;39(6, Suppl 1):S66–76. CrossRef PubMed
  • Young WF, Szychowski J, Karp S, Liu L, Diedrich RT. Economic impacts of the Pueblo smokefree air act. Am J Prev Med 2010;38(3):340–3. CrossRef PubMed
  • Pyles MK, Hahn EJ. Economic effects of Ohio’s smoke-free law on Kentucky and Ohio border counties. Tob Control 2011;20(1):73–6. CrossRef PubMed
  • Pyles MK, Hahn EJ. Economic effects of smoke-free laws on rural and urban counties in Kentucky and Ohio. Nicotine Tob Res 2012;14(1):111–5. CrossRef PubMed
  • American Nonsmokers’ Rights Foundation. Chronological table of U.S. population protected by 100% smokefree state or local laws. http://www.no-smoke.org/pdf/EffectivePopulationList.pdf. Accessed November 1, 2012.
  • US Department of Labor, Bureau of Labor Statistics. Quarterly census of employment and wages, 1990–2011. ftp://ftp.bls.gov/pub/special.requests/cew/beta/. Accessed November 2, 2012.
  • The tax burden on tobacco: historical compilation, volume 46. Arlington (VA): Orzechowski and Walker, Inc; 2011.
  • Baum CF, Shaffer ME, Stillman S. IVREG2: Stata module for extended instrumental variables/2SLS and GMM estimation. http://ideas.repec.org/c/boc/bocode/s425401.html. Accessed October 26, 2012.
  • StataCorp. 2011. Stata: Release 12. Statistical software. College Station (TX): StataCorp LP.
  • Kleibergen F, Paap R. Generalized reduced rank tests using the singular value decomposition. J Econom 2006;133(1):97–126. CrossRef
  • Staiger D, Stock JH. Instrumental variables regression with weak instruments. Econometrica 1997;65(3):557–86. CrossRef
  • Shapiro S. Evaluation of the impact of non-smoking legislation on gross collections of bars and restaurants: comparison of pre- and post-implementation of legislation. An update of one-year post-implementation. http://ncallianceforhealth.org/Media/Tobacco/Smoke-Free%20economic%20analysis-Final%20Copy%2012-14-12.pdf. Accessed March 20, 2013.
  • The health consequences of involuntary exposure to tobacco smoke: a report of the surgeon general. Atlanta (GA): US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2006.
  • Centers for Disease Control and Prevention. Reduced secondhand smoke exposure after implementation of a comprehensive statewide smoking ban — New York, June 26, 2003–June 30, 2004. MMWR Morb Mortal Wkly Rep 2007;56(28):705–8. PubMed
  • Preventing tobacco use among youth and young adults: a report of the Surgeon General. Atlanta (GA): US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2012.

Table 1. Regression Results a for County-Level Restaurant Employment, Study on Economic Impact of Smoke-Free Laws in 9 States, 2000–2010

a All models include indicators for season and county. Robust standard errors indicated in parentheses. b The smoke-free law variable is coded as the percentage of the population that is covered by a smoke-free restaurant law for Alabama, Indiana, Kentucky, Mississippi, Missouri, South Carolina, and Texas. In North Carolina and West Virginia, the smoke-free law variable is coded as zero before implementation of the law and as 1 afterward. c P < .05. d Previous quarter’s restaurant employment.

Table 2. Regression Results a for County-Level Bar Employment, Study on Economic Impact of Smoke-Free Laws in 9 States, 2000–2010

a All models include indicators for season and county. Robust standard errors indicated in parentheses. b The smoke-free law variable is coded as the percentage of the population that is covered by a smoke-free bar law for Alabama, Indiana, Kentucky, Mississippi, Missouri, South Carolina, and Texas. In North Carolina and West Virginia, the smoke-free law variable is coded as zero before implementation of the law and as 1 afterward. c Previous quarter’s bar employment. d P < .05.

Table 3. Regression Results a for City-Level Per Capita Restaurant and Bar Sales in Missouri and Texas, Study on Economic Impact of Smoke-Free Laws in 9 States b , 2000–2010

a All models include indicators for season and city. Robust standard errors indicated in parentheses. b The 9 states were Alabama, Indiana, Kentucky, Mississippi, Missouri, North Carolina, South Carolina, Texas, and West Virginia. c Standard Industrial Classification code 58 for “eating and drinking places.” d Ordinary least squares estimates for Texas city-level sales models. e Previous quarter’s sector per capita sales. f P < .05. g Nonsector sales is the difference between total sales and sales in restaurants or bars (or both).

File Formats Help:

  • PCD podcasts
  • PCD on Facebook
  • Page last reviewed: April 03, 2014
  • Page last updated: April 03, 2014
  • Content source: National Center for Chronic Disease Prevention and Health Promotion
  • Using this Site
  • Contact CDC

Web Analytics

Smoking Ban in Bars and Restaurants

The smoking ban in bars and restaurants law took effect in New York in the year 2003. The law stated that there was no one who was supposed to light a cigar, pipe or a cigarette in a café, restaurant or bar but anyone who wished to do so was supposed to do it from outside where the rest of the people could not inhale the smoke. This actually came about due to the effect which the second hand smokers were found to face and it was found out that quite a number of people used to die frequently across the country due to this second hand smoking. Tobacco smoking has been seen so far as one of the leading preventable mankind enemies as it has caused cancer, lung, asthma respiratory diseases, heart diseases and disability to the unborn baby. Non-smokers are greatly affected if exposed to tobacco smoke. This ban in smoking has actually led to a lot of research from the tobacco industry in trying to advocate against tobacco smoking restrictions as they perceive that if the law becomes 100% effective, it will cause quite a steady fall in their profit margin.

Second hand smoking has caused a number of deaths in the restaurants and bars and it is believed to be the main cause of death of a waitress who died due to lung cancer in 22 nd may 2006. Medical history concluded that her death was due to environmental smoke which caused asthma. This death is actually the one which led to the need to enact legal protection of workers from second hand smoking.

Smoking in bars and restaurants has also been believed to cause damage in the taste of foods and has also led to the decrease of production to the employees which is mainly due to lack of enthusiasm to workers in their work place. Smoking in restaurants has led to an increase in the insurance bills of the workers. Cases of workers also not attending to their workplaces has been reported as they have to attend to other chores like cleaning cigarette burns and maintenance to the burnt materials like carpets and paints, smoke settling on their lighting equipment thus leading to lack of enough light illumination. Since the introduction of the smoking ban in bars and restaurants, restaurants have recorded quite an improvement in the number of sales of food. Quite a number of the families have been said to be regular customers as it’s now taken as an environment for everybody not only for the bar people. In Virginia, smoking is totally prohibited in restaurants and bars not unless a separate room is provided with a room that has ventilation of its own to the outside and its own entrance from outside of which the room is strictly constructed for smoking and no worker is allowed to work in that room.

In New York, since the law was enacted there has been a steady rise in business receipts and bars and the rate of employment in these places has risen. The restaurant and bar owners feared that this would lead to the fall of their businesses. The research carried out showed that almost all the hotels and bars in New York were all smoke-free and the New York population supported the law. In New York, the smoking ban has been seen as a boost to the hotel and bar business.

Around the United States, the smoking ban in bars and restaurants has got no relation with business openings or closures in alcohol-serving establishments or at non-alcohol-selling enterprises. In states like Delaware and California licenses have increased and there is quite an increase in employment. In Ireland, the law which ended smoking in public places came into force on 29 th March 2004 and the Irish government saw a decrease in the level of the licensed trade and the employment field.

In Scotland, studies have shown that this ban has to a small positive change in the field of tax and employment, though in the field of public health there has been a positive effect noted. In Britain, the Chief Medical Officer has noted that this ban can lead to economic growth in the British government and there would be a healthier workforce which would be able to produce more goods and also a decline in the hospital bills. Evidence has shown that smoking bans in bars and restaurants have been proved not to have any negative effect on the business. Bars and restaurants have so far been found to be fully packed with people even after the ban of which was fear to the many.

It’s of my opinion that the smoking ban law should be enforced in all the bars and restaurants all over New York seeing all the endless negative effects the smoking behavior causes to people surrounding smokers and this ban so far has not seen to the closure of any business due to lack of customers.

New York state outlaws smoking in all enclosed workplaces. Nation’s Restaurant News; New York; 2003; Paul Frumkin.

Cite this paper

  • Chicago (N-B)
  • Chicago (A-D)

StudyCorgi. (2021, November 24). Smoking Ban in Bars and Restaurants. https://studycorgi.com/smoking-ban-in-bars-and-restaurants/

"Smoking Ban in Bars and Restaurants." StudyCorgi , 24 Nov. 2021, studycorgi.com/smoking-ban-in-bars-and-restaurants/.

StudyCorgi . (2021) 'Smoking Ban in Bars and Restaurants'. 24 November.

1. StudyCorgi . "Smoking Ban in Bars and Restaurants." November 24, 2021. https://studycorgi.com/smoking-ban-in-bars-and-restaurants/.

Bibliography

StudyCorgi . "Smoking Ban in Bars and Restaurants." November 24, 2021. https://studycorgi.com/smoking-ban-in-bars-and-restaurants/.

StudyCorgi . 2021. "Smoking Ban in Bars and Restaurants." November 24, 2021. https://studycorgi.com/smoking-ban-in-bars-and-restaurants/.

This paper, “Smoking Ban in Bars and Restaurants”, was written and voluntary submitted to our free essay database by a straight-A student. Please ensure you properly reference the paper if you're using it to write your assignment.

Before publication, the StudyCorgi editorial team proofread and checked the paper to make sure it meets the highest standards in terms of grammar, punctuation, style, fact accuracy, copyright issues, and inclusive language. Last updated: November 24, 2021 .

If you are the author of this paper and no longer wish to have it published on StudyCorgi, request the removal . Please use the “ Donate your paper ” form to submit an essay.

Free Samples and Examples of Essays, Homeworks and any Papers

  • Absolutely free
  • Perfect homeworks
  • Fast relevant search
  • No registration and Anonymous

Smoking In Restaurants

Filed Under: Essays Tagged With: life span , smoking

I think smoking in public places such as indoors of a restaurant shoudn’t be allowed. There’s a few good reasons for me saying that. It has been proved that smoking kills you. Besides, would you like someone smoking next to you if you have your baby with you? Not only that, But I don’t think I would like anyone to be smelling the nasty smoke odors while they’re eating. I also think that it shoudn’t be allowed because since it’s indoors all the smoke gets caught inside and it can get sort of hard to even breathe. It has been proven that smoking kills you as time passes! If you keep inhaling the smoke from cigarettes, even if you aren’t smoking it yourself, it can affect your lungs and in time you’ll have shorter life span. So whoever wants to die faster can keep smoking, but why should you let it affect you when you don’t even smoke? Let’s say you’re eating at a restaurant with your family and there’s a baby in the family.

Then this couple walks in the restaurant and start smoking immediately. Do you think it would be healthy for your baby to be inhaling all of this smoke? I don’t think it would be. Another reason is very simple. I don’t think I would like to be inhaling smoke while im eating food im supposed to enjoy. It would annoy me and probably ruin whatever you’re eating. Besides if it’s indoors all the smoke gets caught inside and I’m sure it will be hard to breathe.

The Essay on Banning Smoking Smoke Smokers Places

Please Take Your Butt Outside "A smoking section in a bar or a restaurant is like having a peeing section in a public swimming pool, the pee just like the smoke will spread, and there is no way of escaping it," said an anonymous author. Smoking affects many people's lives each and everyday. For example, I can not even count the times that I have been in a restaurant in a "non-smoking section" and ...

What that will cause is me trying to finish my meal fast and get out of there. Finally, I think it’s pretty obvious why smoking in public places shoudn’t be allowed. It’s bad for whoever inhales the smoke. It can ruin your meal if you’re in a restaurant or so. It can also give you a hard time breathing.

Similar Papers

Don’t you think it’s time to start thinking.

... is a matter of practice and everyone should take enough time to think. That is the only way in which one ... Don’t you think It’s time to start thinking? ”, Northrop Frye takes on a powerful yet ...

Smoking Ban

... the wider ban and consider smoking in restaurants should be restricted. At the same time they worry about what a ... lose business when bars and restaurants go smoke-free. (Smoke-Free Laws Good for Business) Smoke free laws similarly protect bar ...

Banning Smoking Smoke Smokers Places

... seems as if every other person in the restaurant who smokes also lights up. Smoking not only encourages others but it also hurts ... ashtray but I also have a very difficult time breathing because of all the smoke that I breathed into my lungs. Second ...

Secondhand Smoking Smoke Public Places

... facility that allows smoking on a regular basis. Smoke that is inhaled travels directly to ... in your favorite restaurant. As you take a moment to inhale the aroma of ... go to a smoking facility several times?" The decision to ban smoking in all public ...

Teen Smoking Smoke People Smokers

... bothers non-smokers. People who don't smoke shouldn't have to inhale your smoke, although when I didn't smoke the smell never bothered me. Any ... a little trial and error, and some time and you will notice teen smoking will no longer be the problem it ...

smoking in restaurants essay

  • IELTS Scores
  • Life Skills Test
  • Find a Test Centre
  • Alternatives to IELTS
  • General Training
  • Academic Word List
  • Topic Vocabulary
  • Collocation
  • Phrasal Verbs
  • Writing eBooks
  • Reading eBook
  • All eBooks & Courses
  • Sample Essays
  • Ban Smoking Essay

Ban Smoking in Public Places Essay

This is a  ban smoking in public places  essay. It is an example of an essay where you have to give your opinion as to whether you agree or disagree.

The sample answer shows you how you can present the opposing argument first, that is not your opinion, and then present your opinion in the following paragraph.

Ban Smoking Essay

It is always a good idea to present a balanced essay which presents both sides of the argument, but you must always make it very clear what your opinion is and which side of the argument you support.

You should spend about 40 minutes on this task.

Write about the following topic:

Smoking not only harms the smoker, but also those who are nearby. Therefore, smoking should be banned in public places.

To what extent do you agree or disagree?

Give reasons for your answer and include any relevant examples from your own experience or knowledge.

Write at least 250 words.

Model Answer:

Medical studies have shown that smoking not only leads to health problems for the smoker, but also for people close by. As a result of this, many believe that smoking should not be allowed in public places. Although there are arguments on both sides, I strongly agree that a ban is the most appropriate course of action.

Opponents of such a ban argue against it for several reasons. Firstly, they say that passive smokers make the choice to breathe in other people’s smoke by going to places where it is allowed. If they would prefer not to smoke passively, then they do not need to visit places where smoking is permitted. In addition, they believe a ban would possibly drive many bars and pubs out of business as smokers would not go there anymore. They also argue it is a matter of freedom of choice. Smoking is not against the law, so individuals should have the freedom to smoke where they wish.

However, there are more convincing arguments in favour of a ban. First and foremost, it has been proven that tobacco consists of carcinogenic compounds which cause serious harm to a person’s health, not only the smoker. Anyone around them can develop cancers of the lungs, mouth and throat, and other sites in the body. It is simply not fair to impose this upon another person. It is also the case that people’s health is more important than businesses. In any case, pubs and restaurants could adapt to a ban by, for example, allowing smoking areas.

In conclusion, it is clear that it should be made illegal to smoke in public places. This would improve the health of thousands of people, and that is most definitely a positive development.

(290 words)

This essay is well organized and presented.

The introduction is clear - note how it follows the ban smoking in public places essay question - it paraphrases the information in order to introduce the topic and the argument.

The argument against a ban on smoking in public places is presented first. It is made clear that it is not the authors opinion by the topic sentence:

  • "Opponents of such a ban argue against it for several reasons".

And also by the use of the word 'they' to refer to the opponents.

The writer then clearly shows they are moving on to the other argument which is their own (and it has clearly been stated in the thesis that this is their argument):

  • "However, there are more convincing arguments in favour of a ban".

In this paragraph, 'they' is dropped because it is now the writers opinion.

<<< Back

Next >>>

More Agree / Disagree Essays:

smoking in restaurants essay

Multinational Organisations and Culture Essay

Multinational Organisations and Culture Essay: Improve you score for IELTS Essay writing by studying model essays. This Essay is about the extent to which working for a multinational organisation help you to understand other cultures.

smoking in restaurants essay

Airline Tax Essay: Would taxing air travel reduce pollution?

Airline Tax Essay for IELTS. Practice an agree and disagree essay on the topic of taxing airlines to reduce low-cost air traffic. You are asked to decide if you agree or disagree with taxing airlines in order to reduce the problems caused.

smoking in restaurants essay

Sample IELTS Writing: Is spending on the Arts a waste of money?

Sample IELTS Writing: A common topic in IELTS is whether you think it is a good idea for government money to be spent on the arts. i.e. the visual arts, literary and the performing arts, or whether it should be spent elsewhere, usually on other public services.

smoking in restaurants essay

Return of Historical Objects and Artefacts Essay

This essay discusses the topic of returning historical objects and artefacts to their country of origin. It's an agree/disagree type IELTS question.

smoking in restaurants essay

Employing Older People Essay: Is the modern workplace suitable?

Employing Older People Essay. Examine model essays for IELTS Task 2 to improve your score. This essay tackles the issue of whether it it better for employers to hire younger staff rather than those who are older.

smoking in restaurants essay

Internet vs Newspaper Essay: Which will be the best source of news?

A recent topic to write about in the IELTS exam was an Internet vs Newspaper Essay. The question was: Although more and more people read news on the internet, newspapers will remain the most important source of news. To what extent do you agree or disagree?

smoking in restaurants essay

Human Cloning Essay: Should we be scared of cloning humans?

Human cloning essay - this is on the topic of cloning humans to use their body parts. You are asked if you agree with human cloning to use their body parts, and what reservations (concerns) you have.

smoking in restaurants essay

Scientific Research Essay: Who should be responsible for its funding?

Scientific research essay model answer for Task 2 of the test. For this essay, you need to discuss whether the funding and controlling of scientific research should be the responsibility of the government or private organizations.

smoking in restaurants essay

Examinations Essay: Formal Examinations or Continual Assessment?

Examinations Essay: This IELTS model essay deals with the issue of whether it is better to have formal examinations to assess student’s performance or continual assessment during term time such as course work and projects.

smoking in restaurants essay

Dying Languages Essay: Is a world with fewer languages a good thing?

Dying languages essays have appeared in IELTS on several occasions, an issue related to the spread of globalisation. Check out a sample question and model answer.

smoking in restaurants essay

Paying Taxes Essay: Should people keep all the money they earn?

Paying Taxes Essay: Read model essays to help you improve your IELTS Writing Score for Task 2. In this essay you have to decide whether you agree or disagree with the opinion that everyone should be able to keep their money rather than paying money to the government.

smoking in restaurants essay

IELTS Sample Essay: Is alternative medicine ineffective & dangerous?

IELTS sample essay about alternative and conventional medicine - this shows you how to present a well-balanced argument. When you are asked whether you agree (or disagree), you can look at both sides of the argument if you want.

smoking in restaurants essay

Role of Schools Essay: How should schools help children develop?

This role of schools essay for IELTS is an agree disagree type essay where you have to discuss how schools should help children to develop.

smoking in restaurants essay

IELTS Internet Essay: Is the internet damaging social interaction?

Internet Essay for IELTS on the topic of the Internet and social interaction. Included is a model answer. The IELTS test usually focuses on topical issues. You have to discuss if you think that the Internet is damaging social interaction.

smoking in restaurants essay

Free University Education Essay: Should it be paid for or free?

Free university education Model IELTS essay. Learn how to write high-scoring IELTS essays. The issue of free university education is an essay topic that comes up in the IELTS test. This essay therefore provides you with some of the key arguments about this topic.

smoking in restaurants essay

Essay for IELTS: Are some advertising methods unethical?

This is an agree / disagree type question. Your options are: 1. Agree 100% 2. Disagree 100% 3. Partly agree. In the answer below, the writer agrees 100% with the opinion. There is an analysis of the answer.

smoking in restaurants essay

IELTS Vegetarianism Essay: Should we all be vegetarian to be healthy?

Vegetarianism Essay for IELTS: In this vegetarianism essay, the candidate disagrees with the statement, and is thus arguing that everyone does not need to be a vegetarian.

smoking in restaurants essay

Technology Development Essay: Are earlier developments the best?

This technology development essay shows you a complex IELTS essay question that is easily misunderstood. There are tips on how to approach IELTS essay questions

smoking in restaurants essay

Truthfulness in Relationships Essay: How important is it?

This truthfulness in relationships essay for IELTS is an agree / disagree type essay. You need to decide if it's the most important factor.

smoking in restaurants essay

Extinction of Animals Essay: Should we prevent this from happening?

In this extinction of animals essay for IELTS you have to decide whether you think humans should do what they can to prevent the extinction of animal species.

Any comments or questions about this page or about IELTS? Post them here. Your email will not be published or shared.

Before you go...

Check out the ielts buddy band 7+ ebooks & courses.

smoking in restaurants essay

Would you prefer to share this page with others by linking to it?

  • Click on the HTML link code below.
  • Copy and paste it, adding a note of your own, into your blog, a Web page, forums, a blog comment, your Facebook account, or anywhere that someone would find this page valuable.

Band 7+ eBooks

"I think these eBooks are FANTASTIC!!! I know that's not academic language, but it's the truth!"

Linda, from Italy, Scored Band 7.5

ielts buddy ebooks

IELTS Modules:

Other resources:.

  • All Lessons
  • Band Score Calculator
  • Writing Feedback
  • Speaking Feedback
  • Teacher Resources
  • Free Downloads
  • Recent Essay Exam Questions
  • Books for IELTS Prep
  • Useful Links

smoking in restaurants essay

Recent Articles

RSS

Useful Language for IELTS Graphs

May 16, 24 04:44 AM

Useful Language for IELTS Graphs

Taking a Gap Year

May 14, 24 03:00 PM

IELTS Essay: Loving Wildlife and Nature

May 10, 24 02:36 AM

Important pages

IELTS Writing IELTS Speaking IELTS Listening   IELTS Reading All Lessons Vocabulary Academic Task 1 Academic Task 2 Practice Tests

Connect with us

smoking in restaurants essay

Copyright © 2022- IELTSbuddy All Rights Reserved

IELTS is a registered trademark of University of Cambridge, the British Council, and IDP Education Australia. This site and its owners are not affiliated, approved or endorsed by the University of Cambridge ESOL, the British Council, and IDP Education Australia.

smoking in restaurants essay

Margurite J. Perez

Finished Papers

smoking in restaurants essay

  • Share full article

Advertisement

Supported by

Guest Essay

As Bird Flu Looms, the Lessons of Past Pandemics Take On New Urgency

A woman wears a mechanical nozzle mask in 1919 during the Spanish flu epidemic.

By John M. Barry

Mr. Barry, a scholar at the Tulane University School of Public Health and Tropical Medicine, is the author of “The Great Influenza: The Story of the Deadliest Pandemic in History.”

In 1918, an influenza virus jumped from birds to humans and killed an estimated 50 million to 100 million people in a world with less than a quarter of today’s population. Dozens of mammals also became infected.

Now we are seeing another onslaught of avian influenza. For years it has been devastating bird populations worldwide and more recently has begun infecting mammals , including cattle, a transmission never seen before. In another first, the virus almost certainly jumped recently from a cow to at least one human — fortunately, a mild case.

While much would still have to happen for this virus to ignite another human pandemic, these events provide another reason — as if one were needed — for governments and public health authorities to prepare for the next pandemic. As they do, they must be cautious about the lessons they might think Covid-19 left behind. We need to be prepared to fight the next war, not the last one.

Two assumptions based on our Covid experience would be especially dangerous and could cause tremendous damage, even if policymakers realized their mistake and adjusted quickly.

The first involves who is most likely to die from a pandemic virus. Covid primarily killed people 65 years and older , but Covid was an anomaly. The five previous pandemics we have reliable data about all killed much younger populations.

The 1889 pandemic most resembles Covid (and some scientists believe a coronavirus caused it). Young children escaped almost untouched and it killed mostly older people, but people ages 15 to 24 suffered the most excess mortality , or deaths above normal. Influenza caused the other pandemics, but unlike deaths from seasonal influenza, which usually kills older adults, in the 1957, 1968 and 2009 outbreaks, half or more deaths occurred in people younger than 65. The catastrophic 1918 pandemic was the complete reverse of Covid: Well over 90 percent of the excess mortality occurred in people younger than 65. Children under 10 were the most vulnerable, and those ages 25 to 29 followed.

Any presumption that older people would be the chief victims of the next pandemic — as they were in Covid — is wrong, and any policy so premised could leave healthy young adults and children exposed to a lethal virus.

The second dangerous assumption is that public health measures like school and business closings and masking had little impact. That is incorrect.

Australia, Germany and Switzerland are among the countries that demonstrated those interventions can succeed. Even the experience of the United States provides overwhelming, if indirect, evidence of the success of those public health measures.

The evidence comes from influenza, which transmits like Covid, with nearly one-third of cases transmitted by asymptomatic people. The winter before Covid, influenza killed an estimated 25,000 here ; in that first pandemic winter, influenza deaths were under 800. The public health steps taken to slow Covid contributed significantly to this decline, and those same measures no doubt affected Covid as well.

So the question isn’t whether those measures work. They do. It’s whether their benefits outweigh their social and economic costs. This will be a continuing calculation.

Such measures can moderate transmission, but they cannot be sustained indefinitely. And even the most extreme interventions cannot eliminate a pathogen that escapes initial containment if, like influenza or the virus that causes Covid-19, it is both airborne and transmitted by people showing no symptoms. Yet such interventions can achieve two important goals.

The first is preventing hospitals from being overrun. Achieving this outcome could require a cycle of imposing, lifting and reimposing public health measures to slow the spread of the virus. But the public should accept that because the goal is understandable, narrow and well defined.

The second objective is to slow transmission to buy time for identifying, manufacturing and distributing therapeutics and vaccines and for clinicians to learn how to manage care with the resources at hand. Artificial intelligence will perhaps be able to extrapolate from mountains of data which restrictions deliver the most benefits — whether, for example, just closing bars would be enough to significantly dampen spread — and which impose the greatest cost. A.I. should also speed drug development. And wastewater monitoring can track the pathogen’s movements and may make it possible to limit the locations where interventions are needed.

Still, what’s achievable will depend on the pathogen’s severity and transmissibility, and, as we sadly learned in the United States, how well — or poorly — leaders communicate the goals and the reasons behind them.

Specifically, officials will confront whether to impose the two most contentious interventions, school closings and mask mandates. What should they do?

Children are generally superspreaders of respiratory disease and can have disproportionate impact. Indeed, vaccinating children against pneumococcal pneumonia can cut the disease by 87 percent in people 50 and older. And schools were central to spreading the pandemics of 1957, 1968 and 2009. So there was good reason to think closing schools during Covid would save many lives.

In fact, closing schools did reduce Covid’s spread, yet the consensus view is that any gain was not worth the societal disruption and damage to children’s social and educational development. But that tells us nothing about the future. What if the next pandemic is deadlier than 1957’s but as in 1957, 48 percent of excess deaths are among those younger than 15 and schools are central to spread? Would it make sense to close schools then?

Masks present a much simpler question. They work. We’ve known they work since 1917, when they helped protect soldiers from a measles epidemic. A century later, all the data on Covid have actually demonstrated significant benefits from masks.

But whether to mandate masks is a difficult call. Too many people wear poorly fitted masks or wear them incorrectly. So even without adding in the complexities of politics, compliance is a problem. Whether government mask mandates will be worth the resistance they foment will depend on the severity of the virus.

That does not mean that institutions and businesses can’t or shouldn’t require masks. Nor does it mean we can’t increase the use of masks with better messaging. People accept smoking bans because they understand long-term exposure to secondhand smoke can cause cancer. A few minutes of exposure to Covid can kill. Messaging that combines self-protection with communitarian values could dent resistance significantly.

Individuals should want to protect themselves, given the long-term threat to their health. An estimated 7 percent of Americans have been affected by long Covid of varying severity, and a re-infection can still set it off in those who have so far avoided it. The 1918 pandemic also caused neurological and cardiovascular problems lasting decades, and children exposed in utero suffered worse health and higher mortality than their siblings. We can expect the same from the next pandemic.

What should we learn from the past? Every pandemic we have good information about was unique. That makes information itself the most valuable commodity. We must gather it, analyze it, act upon it and communicate it.

Epidemiological information can answer the biggest question: whether to deploy society-wide public health interventions at all. But the epidemiology of the virus is hardly the only information that matters. Before Covid vaccines were available, the single drug that saved the most lives was dexamethasone. Health officials in Britain discovered its effectiveness because the country has a shared data system that enabled them to analyze the efficacy of treatments being tried around the country. We have no comparable system in the United States. We need one.

Perhaps most important, government officials and health care experts must communicate to the public effectively. The United States failed dismally at this. There was no organized effort to counter social media disinformation, and experts damaged their own credibility by reversing their advice several times. They could have avoided these self-inflicted wounds by setting public expectations properly. The public should have been told that scientists had never seen this virus before, that they were giving their best advice based on their knowledge at the time and that their advice could — and probably would — change as more information came in. Had they done this, they probably would have retained more of the public’s confidence.

Trust matters. A pre-Covid analysis of the pandemic readiness of countries around the world rated the United States first because of its resources. Yet America had the second-worst rate of infections of any high-income country.

A pandemic analysis of 177 countries published in 2022 found that resources did not correlate with infections. Trust in government and fellow citizens did. That’s the lesson we really need to remember for the next time.

John M. Barry, a scholar at the Tulane University School of Public Health and Tropical Medicine, is the author of “The Great Influenza: The Story of the Deadliest Pandemic in History.”

The Times is committed to publishing a diversity of letters to the editor. We’d like to hear what you think about this or any of our articles. Here are some tips . And here’s our email: [email protected] .

Follow the New York Times Opinion section on Facebook , Instagram , TikTok , WhatsApp , X and Threads .

is a “rare breed” among custom essay writing services today

All the papers delivers are completely original as we check every single work for plagiarism via advanced plagiarism detection software. As a double check of the paper originality, you are free to order a full plagiarism PDF report while placing the order or afterwards by contacting our Customer Support Team.

Being tempted by low prices and promises of quick paper delivery, you may choose another paper writing service. The truth is that more often than not their words are hollow. While the main purpose of such doubtful companies is to cash in on credulity of their clients, the prime objective of is clients’ satisfaction. We do fulfill our guarantees, and if a customer believes that initial requirements were not met or there is plagiarism found and proved in paper, they can request revision or refund. However, a refund request is acceptable only within 14 days of the initial deadline.

Our paper writing service is the best choice for those who cannot handle writing assignments themselves for some reason. At , you can order custom written essays, book reviews, film reports, research papers, term papers, business plans, PHD dissertations and so forth. No matter what academic level or timeframe requested is – we will produce an excellent work for you!

Customers usually want to be informed about how the writer is progressing with their paper and we fully understand that – he who pays the piper calls the tune. Therefore, with you have a possibility to get in touch with your writer any time you have some concerns or want to give additional instructions. Our customer support staff is there for you 24/7 to answer all your questions and deal with any problems if necessary.

Of course, the best proof of the premium quality of our services is clients’ testimonials. Just take a few minutes to look through the customer feedback and you will see that what we offer is not taking a gamble.

is a company you can trust. Share the burden of academic writing with us. Your future will be in safe hands! Buy essays, buy term papers or buy research papers and economize your time, your energy and, of course, your money!

As we have previously mentioned, we value our writers' time and hard work and therefore require our clients to put some funds on their account balance. The money will be there until you confirm that you are fully satisfied with our work and are ready to pay your paper writer. If you aren't satisfied, we'll make revisions or give you a full refund.

Is buying essays online safe?

Shopping through online platforms is a highly controversial issue. Naturally, you cannot be completely sure when placing an order through an unfamiliar site, with which you have never cooperated. That is why we recommend that people contact trusted companies that have hundreds of positive reviews.

As for buying essays through sites, then you need to be as careful as possible and carefully check every detail. Read company reviews on third-party sources or ask a question on the forum. Check out the guarantees given by the specialists and discuss cooperation with the company manager. Do not transfer money to someone else's account until they send you a document with an essay for review.

Good online platforms provide certificates and some personal data so that the client can have the necessary information about the service manual. Service employees should immediately calculate the cost of the order for you and in the process of work are not entitled to add a percentage to this amount, if you do not make additional edits and preferences.

Alexander Freeman

  • History Category
  • Psychology Category
  • Informative Category
  • Analysis Category
  • Business Category
  • Economics Category
  • Health Category
  • Literature Category
  • Review Category
  • Sociology Category
  • Technology Category

Diane M. Omalley

Finished Papers

offers three types of essay writers: the best available writer aka. standard, a top-level writer, and a premium essay expert. Every class, or type, of an essay writer has its own pros and cons. Depending on the difficulty of your assignment and the deadline, you can choose the desired type of writer to fit in your schedule and budget. We guarantee that every writer will be a subject-matter expert with proper writing skills and background knowledge across all high school, college, and university subjects. Also, we don’t work with undergraduates or dropouts, focusing more on Bachelor, Master, and Doctoral level writers (yes, we offer writers with Ph.D. degrees!)

Live chat online

Alexander Freeman

Finished Papers

Our writers always follow the customers' requirements very carefully

Write essay for me and soar high!

We always had the trust of our customers, and this is due to the superior quality of our writing. No sign of plagiarism is to be found within any content of the entire draft that we write. The writings are thoroughly checked through anti-plagiarism software. Also, you can check some of the feedback stated by our customers and then ask us to write essay for me.

IMAGES

  1. Argumentative Essay About Smoking

    smoking in restaurants essay

  2. Argumentative Essay On Cigarette Smoking Example

    smoking in restaurants essay

  3. Smoking Persuasive Essay

    smoking in restaurants essay

  4. Smoking in Restaurants

    smoking in restaurants essay

  5. Smoking Argumentative Essay

    smoking in restaurants essay

  6. 😱 Smoking essay example. Smoking Essay Examples. 2022-10-16

    smoking in restaurants essay

VIDEO

  1. This bar/restaurants panel was smoking when a 50 amp bolt on breaker melted down. Simon Electric

  2. Essay on smoking in public places should be banned || Essay writing in English|| essay writing

  3. Essay on Smoking in Urdu

  4. Essay on Smoking for students || Essay

  5. Classify non-smoking and smoking restaurants, says Tumpat MP

  6. essay on smoking in english/dhumrapan per nibandh

COMMENTS

  1. Essay on Smoking in English for Students

    500 Words Essay On Smoking. One of the most common problems we are facing in today's world which is killing people is smoking. A lot of people pick up this habit because of stress, personal issues and more. In fact, some even begin showing it off. When someone smokes a cigarette, they not only hurt themselves but everyone around them.

  2. Smoking in Restaurants

    Strong Persuasive Essay. A middle school student wrote this persuasive essay to argue for banning smoking in restaurants in her state. Title: Smoking in Restaurants. Level: Grade 6, Grade 7, Grade 8. Mode: Persuasive Writing. Form: Persuasive Essay. Learn more about writing assessment.

  3. Impacts of Local Public Smoking Bans on Smoking Behaviors and Tobacco

    Abstract. This paper examines the immediate and long-term effects of public smoking bans on smoking prevalence, smoking regularity, smoking intensity, and secondhand tobacco smoke exposure. We supplement the extensive literature on the effects of various types of tobacco control legislation on smoking behavior in developed countries by studying ...

  4. Effects Of Smoking In Restaurants

    Smoking causes gum disease, staining and loss of teeth as well as bad breath. "When tar, the solid particles in tobacco smoke that collect in the lungs, mixes with saliva in the mouth, it coats the teeth. Teeth take on a brownish color, and flat surfaces where the tar can accumulate can even become black, are all results of smoke staining teeth.

  5. Should Smoking Be Banned in Public Places? Essay

    Thesis statement. Smoking in public places poses health risks to non smokers and should be banned. This paper will be discussing whether cigarette smoking should not be allowed in public places. First the paper will explore dangers associated with smoking in public and not on those who smoke, but on non-smokers.

  6. 8 Conclusions and Recommendations

    Smoking banned in restaurants, bars, other workplaces. 40% decrease in average monthly admissions (from 40 to 24; decrease of 16 cases, 95% CI) Ban on smoking in all indoor public places, including offices, retail shops, cafes, bars, restaurants, discotheques in Italy; provision for smoking rooms. 6.4% decrease from previous year

  7. 1 Introduction, Summary, and Conclusions

    Tobacco use is a global epidemic among young people. As with adults, it poses a serious health threat to youth and young adults in the United States and has significant implications for this nation's public and economic health in the future (Perry et al. 1994; Kessler 1995). The impact of cigarette smoking and other tobacco use on chronic disease, which accounts for 75% of American spending ...

  8. 235 Smoking Essay Topics & Titles for Smoking Essay + Examples

    In your essay about smoking, you might want to focus on its causes and effects or discuss why smoking is a dangerous habit. Other options are to talk about smoking prevention or to concentrate on the reasons why it is so difficult to stop smoking. Here we've gathered a range of catchy titles for research papers about smoking together with ...

  9. 1 Introduction, Summary, and Conclusions

    The topic of passive or involuntary smoking was first addressed in the 1972 U.S. Surgeon General's report (The Health Consequences of Smoking, U.S. Department of Health, Education, and Welfare [USDHEW] 1972), only eight years after the first Surgeon General's report on the health consequences of active smoking (USDHEW 1964). Surgeon General Dr. Jesse Steinfeld had raised concerns about ...

  10. Examples & Tips for Writing a Persuasive Essay About Smoking

    Persuasive Essay Examples About Smoking. Smoking is one of the leading causes of preventable death in the world. It leads to adverse health effects, including lung cancer, heart disease, and damage to the respiratory tract. However, the number of people who smoke cigarettes has been on the rise globally. A lot has been written on topics related ...

  11. Banning Smoking In Restaurants In All States Essay

    The author is of the view that smoking should be banned in restaurants in all 50 states to lower the rate of second hand smoking related diseases in non-smokers. Due to bad impacts on secondhand smoke, it has been banned on public places and educational institutions in many states. For example, Utah fully banned smoking in restaurants in 1995 ...

  12. The Economic Impact of Smoke-Free Laws on Restaurants and Bars in 9 States

    Smoke-free air laws in restaurants and bars protect patrons and workers from involuntary exposure to secondhand smoke, but owners often express concern that such laws will harm their businesses. The primary objective of this study was to estimate the association between local smoke-free air laws and economic outcomes in restaurants and bars in 8 states without statewide smoke-free air laws...

  13. Smoking in restaurants, bars and pubs should be banned in ...

    No smoking in such enterprises could also help to reduce the number of young smokers in the future and thus also reduce the number of smokers in general, whereas smoking is an addiction for life. The last and most important of all arguments supporting a ban on smoking in bars, pubs and restaurants, is the health of passive smokers.

  14. Smoking Ban in Bars and Restaurants

    Second hand smoking has caused a number of deaths in the restaurants and bars and it is believed to be the main cause of death of a waitress who died due to lung cancer in 22 nd may 2006. Medical history concluded that her death was due to environmental smoke which caused asthma. This death is actually the one which led to the need to enact ...

  15. Smoking In Restaurants, Sample of Essays

    The Essay on Banning Smoking Smoke Smokers Places. Please Take Your Butt Outside "A smoking section in a bar or a restaurant is like having a peeing section in a public swimming pool, the pee just like the smoke will spread, and there is no way of escaping it," said an anonymous author. Smoking affects many people's lives each and everyday.

  16. Ban Smoking in Public Places Essay

    This is a ban smoking in public places essay. It is an example of an essay where you have to give your opinion as to whether you agree or disagree. ... In any case, pubs and restaurants could adapt to a ban by, for example, allowing smoking areas. In conclusion, it is clear that it should be made illegal to smoke in public places. This would ...

  17. Argumentative Essay Sample on Smoking in Public Places

    Provide arguments for the thesis statement. Notably, the sample essay provides several reasons for the necessity of a smoking ban in public places. The essay's second paragraph, the first part of the main body, focuses on the health issues resulting from smoking, explaining what diseases people face when they smoke.

  18. Should Smoking Be Banned In Public Places Essay

    Sample 1 on s hould smoking be banned in public places essay. Some say 'smoking in public areas should be banned' while others go against the ban. Discuss both sides and give your opinion. Tip: It is an opinion-based topic. Here, both sides need to be discussed, and finally, the opinion of the test-taker should be discussed. Sample essay:

  19. Why should smoking be banned in the restaurants?

    In 2013, there was a bill, which supposed that ban on smoking in the restaurants should have been valid from January 2014. This should have included not only common cigarettes but also electronic cigarettes and water pipes with a tobacco filling. Smoking could have been allowed only in the open front gardens.

  20. Smoking In Restaurants Essay

    Smoking In Restaurants Essay: offers three types of essay writers: the best available writer aka. standard, a top-level writer, and a premium essay expert. Every class, or type, of an essay writer has its own pros and cons. Depending on the difficulty of your assignment and the deadline, you can choose the desired type of writer to fit in your ...

  21. Smoking In Restaurants Essay

    Smoking In Restaurants Essay - Economics Category. 1344 . Finished Papers. 1811 Orders prepared. George E. Smoking In Restaurants Essay: Didukung Oleh. Level: College, High School, University, Master's, Undergraduate. Caring Customer Support We respond immediately 24/7 in chat or by phone. ID 14317. Accept. User ID: 108253 ...

  22. Opinion

    226. By John M. Barry. Mr. Barry, a scholar at the Tulane University School of Public Health and Tropical Medicine, is the author of "The Great Influenza: The Story of the Deadliest Pandemic in ...

  23. Smoking In Restaurants Essay

    Writing essays, abstracts and scientific papers also falls into this category and can be done by another person. In order to use this service, the client needs to ask the professor about the topic of the text, special design preferences, fonts and keywords. ... Smoking In Restaurants Essay, School Case Study Format, Graduate Electronic Engineer ...

  24. Smoking In Restaurants Essay

    Team of Essay Writers. Place an order. 1 (888)814-4206 1 (888)499-5521. 12Customer reviews. Essay (any type)