Science Essay

Betty P.

Learn How to Write an A+ Science Essay

11 min read

science essay

People also read

150+ Engaging Science Essay Topics To Hook Your Readers

Read 8 Impressive Science Essay Examples And Get Inspired

Science Fiction Essay: Examples & Easy Steps Guide

Essay About Science and Technology| Tips & Examples

Essay About Science in Everyday Life - Samples & Writing Tips

Check Out 5 Impressive Essay About Science Fair Examples

Did you ever imagine that essay writing was just for students in the Humanities? Well, think again! 

For science students, tackling a science essay might seem challenging, as it not only demands a deep understanding of the subject but also strong writing skills. 

However, fret not because we've got your back!

With the right steps and tips, you can write an engaging and informative science essay easily!

This blog will take you through all the important steps of writing a science essay, from choosing a topic to presenting the final work.

So, let's get into it!

Arrow Down

  • 1. What Is a Science Essay?
  • 2. How To Write a Science Essay?
  • 3. How to Structure a Science Essay?
  • 4. Science Essay Examples
  • 5. How to Choose the Right Science Essay Topic
  • 6. Science Essay Topics
  • 7. Science Essay Writing Tips

What Is a Science Essay?

A science essay is an academic paper focusing on a scientific topic from physics, chemistry, biology, or any other scientific field.

Science essays are mostly expository. That is, they require you to explain your chosen topic in detail. However, they can also be descriptive and exploratory.

A descriptive science essay aims to describe a certain scientific phenomenon according to established knowledge.

On the other hand, the exploratory science essay requires you to go beyond the current theories and explore new interpretations.

So before you set out to write your essay, always check out the instructions given by your instructor. Whether a science essay is expository or exploratory must be clear from the start. Or, if you face any difficulty, you can take help from a science essay writer as well. 

Moreover, check out this video to understand scientific writing in detail.

Now that you know what it is, let's look at the steps you need to take to write a science essay. 

Order Essay

Paper Due? Why Suffer? That's our Job!

How To Write a Science Essay?

Writing a science essay is not as complex as it may seem. All you need to do is follow the right steps to create an impressive piece of work that meets the assigned criteria.

Here's what you need to do:

Choose Your Topic

A good topic forms the foundation for an engaging and well-written essay. Therefore, you should ensure that you pick something interesting or relevant to your field of study. 

To choose a good topic, you can brainstorm ideas relating to the subject matter. You may also find inspiration from other science essays or articles about the same topic.

Conduct Research

Once you have chosen your topic, start researching it thoroughly to develop a strong argument or discussion in your essay. 

Make sure you use reliable sources and cite them properly . You should also make notes while conducting your research so that you can reference them easily when writing the essay. Or, you can get expert assistance from an essay writing service to manage your citations. 

Create an Outline

A good essay outline helps to organize the ideas in your paper. It serves as a guide throughout the writing process and ensures you don’t miss out on important points.

An outline makes it easier to write a well-structured paper that flows logically. It should be detailed enough to guide you through the entire writing process.

However, your outline should be flexible, and it's sometimes better to change it along the way to improve your structure.

Start Writing

Once you have a good outline, start writing the essay by following your plan.

The first step in writing any essay is to draft it. This means putting your thoughts down on paper in a rough form without worrying about grammar or spelling mistakes.

So begin your essay by introducing the topic, then carefully explain it using evidence and examples to support your argument.

Don't worry if your first draft isn't perfect - it's just the starting point!

Proofread & Edit

After finishing your first draft, take time to proofread and edit it for grammar and spelling mistakes.

Proofreading is the process of checking for grammatical mistakes. It should be done after you have finished writing your essay.

Editing, on the other hand, involves reviewing the structure and organization of your essay and its content. It should be done before you submit your final work.

Both proofreading and editing are essential for producing a high-quality essay. Make sure to give yourself enough time to do them properly!

After revising the essay, you should format it according to the guidelines given by your instructor. This could involve using a specific font size, page margins, or citation style.

Most science essays are written in Times New Roman font with 12-point size and double spacing. The margins should be 1 inch on all sides, and the text should be justified.

In addition, you must cite your sources properly using a recognized citation style such as APA , Chicago , or Harvard . Make sure to follow the guidelines closely so that your essay looks professional.

Following these steps will help you create an informative and well-structured science essay that meets the given criteria.

Tough Essay Due? Hire Tough Writers!

How to Structure a Science Essay?

A basic science essay structure includes an introduction, body, and conclusion. 

Let's look at each of these briefly.

  • Introduction

Your essay introduction should introduce your topic and provide a brief overview of what you will discuss in the essay. It should also state your thesis or main argument.

For instance, a thesis statement for a science essay could be, 

"The human body is capable of incredible feats, as evidenced by the many athletes who have competed in the Olympic games."

The body of your essay will contain the bulk of your argument or discussion. It should be divided into paragraphs, each discussing a different point.

For instance, imagine you were writing about sports and the human body. 

Your first paragraph can discuss the physical capabilities of the human body. 

The second paragraph may be about the physical benefits of competing in sports. 

Similarly, in the third paragraph, you can present one or two case studies of specific athletes to support your point. 

Once you have explained all your points in the body, it’s time to conclude the essay.

Your essay conclusion should summarize the main points of your essay and leave the reader with a sense of closure.

In the conclusion, you reiterate your thesis and sum up your arguments. You can also suggest implications or potential applications of the ideas discussed in the essay. 

By following this structure, you will create a well-organized essay.

Check out a few example essays to see this structure in practice.

Science Essay Examples

A great way to get inspired when writing a science essay is to look at other examples of successful essays written by others. 

Here are some examples that will give you an idea of how to write your essay.

Science Essay About Genetics - Science Essay Example

Environmental Science Essay Example | PDF Sample

The Science of Nanotechnology

Science, Non-Science, and Pseudo-Science

The Science Of Science Education

Science in our Daily Lives

Short Science Essay Example

Let’s take a look at a short science essay: 

Want to read more essay examples? Here, you can find more science essay examples to learn from.

How to Choose the Right Science Essay Topic

Choosing the right science essay topic is a critical first step in crafting a compelling and engaging essay. Here's a concise guide on how to make this decision wisely:

  • Consider Your Interests: Start by reflecting on your personal interests within the realm of science. Selecting a topic that genuinely fascinates you will make the research and writing process more enjoyable and motivated.
  • Relevance to the Course: Ensure that your chosen topic aligns with your course or assignment requirements. Read the assignment guidelines carefully to understand the scope and focus expected by your instructor.
  • Current Trends and Issues: Stay updated with the latest scientific developments and trends. Opting for a topic that addresses contemporary issues not only makes your essay relevant but also demonstrates your awareness of current events in the field.
  • Narrow Down the Scope: Science is vast, so narrow your topic to a manageable scope. Instead of a broad subject like "Climate Change," consider a more specific angle like "The Impact of Melting Arctic Ice on Global Sea Levels."
  • Available Resources: Ensure that there are sufficient credible sources and research materials available for your chosen topic. A lack of resources can hinder your research efforts.
  • Discuss with Your Instructor: If you're uncertain about your topic choice, don't hesitate to consult your instructor or professor. They can provide valuable guidance and may even suggest specific topics based on your academic goals.

Science Essay Topics

Choosing an appropriate topic for a science essay is one of the first steps in writing a successful paper.

Here are a few science essay topics to get you started:

  • How space exploration affects our daily lives?
  • How has technology changed our understanding of medicine?
  • Are there ethical considerations to consider when conducting scientific research?
  • How does climate change affect the biodiversity of different parts of the world?
  • How can artificial intelligence be used in medicine?
  • What impact have vaccines had on global health?
  • What is the future of renewable energy?
  • How do we ensure that genetically modified organisms are safe for humans and the environment?
  • The influence of social media on human behavior: A social science perspective
  • What are the potential risks and benefits of stem cell therapy?

Important science topics can cover anything from space exploration to chemistry and biology. So you can choose any topic according to your interests!

Need more topics? We have gathered 100+ science essay topics to help you find a great topic!

Continue reading to find some tips to help you write a successful science essay. 

Science Essay Writing Tips

Once you have chosen a topic and looked at examples, it's time to start writing the science essay.

Here are some key tips for a successful essay:

  • Research thoroughly

Make sure you do extensive research before you begin writing your paper. This will ensure that the facts and figures you include are accurate and supported by reliable sources.

  • Use clear language

Avoid using jargon or overly technical language when writing your essay. Plain language is easier to understand and more engaging for readers.

  • Referencing

Always provide references for any information you include in your essay. This will demonstrate that you acknowledge other people's work and show that the evidence you use is credible.

Make sure to follow the basic structure of an essay and organize your thoughts into clear sections. This will improve the flow and make your essay easier to read.

  • Ask someone to proofread

It’s also a good idea to get someone else to proofread your work as they may spot mistakes that you have missed.

These few tips will help ensure that your science essay is well-written and informative!

You've learned the steps to writing a successful science essay and looked at some examples and topics to get you started. 

Make sure you thoroughly research, use clear language, structure your thoughts, and proofread your essay. With these tips, you’re sure to write a great science essay! 

Do you still need expert help writing a science essay? Our science essay writing service is here to help. With our team of professional writers, you can rest assured that your essay will be written to the highest standards.

Contact our essay service now to get started!

Also, do not forget to try our essay typer tool for quick and cost-free aid with your essays!

AI Essay Bot

Write Essay Within 60 Seconds!

Betty P.

Betty is a freelance writer and researcher. She has a Masters in literature and enjoys providing writing services to her clients. Betty is an avid reader and loves learning new things. She has provided writing services to clients from all academic levels and related academic fields.

Get Help

Paper Due? Why Suffer? That’s our Job!

Keep reading

science essay topics

Become a Writer Today

Essays About Science: Top 12 Examples and Prompts

Science can explain almost every aspect of our lives; if you want to write essays about science, start by reading our guide.

The word “science” comes from the Latin word Scientia or “knowledge,” It does indeed leave us with no shortage of knowledge as it advances to extraordinary levels. It is present in almost every aspect of our lives, allowing us to live the way we do today and helping us improve society. 

In the 21st century, we see science everywhere. It has given us the technology we deem “essential” today, from our mobile phones to air conditioning units to lightbulbs and refrigerators. Yet, it has also allowed us to learn so much about the unknown, such as the endless vacuum of space and the ocean’s mysterious depths. It is, without a doubt, a vehicle for humanity to obtain knowledge and use this knowledge to flourish. 

To start writing essays about science, look at some of our featured essay examples below. 

1. The challenging environment for science in the 21st century by Nithaya Chetty 

2. disadvantages of science by ella gray, 3. reflections from a nobel winner: scientists need time to make discoveries by donna strickland.

  • 4.  ​​The fact of cloning by Cesar Hill

5. T. Rex Like You Haven’t Seen Him: With Feathers by Jason Farago

6. common, cheap ingredients can break down some ‘forever chemicals’ by jude coleman, 1. what is science, 2. a noteworthy scientist, 3. why is it important to study science, 4. are robots a net positive for society, 5. types of sciences, 6. science’s role in warfare.

“Open-ended, unfettered science in its purest form has, over the centuries, been pursued in the interests of understanding nature in a fundamental way, and long may that continue. Scientific ideas and discoveries have often been very successfully exploited for commercial gain and societal improvements, and much of the science system today the world over is designed to push scientists in the direction of more relevance.”

For South Africa to prosper, Chetty encourages cooperation and innovation among scientists. He discusses several problems the country faces, including the politicization of research, a weak economy, and misuse of scientific discoveries. These challenges, he believes, can be overcome if the nation works as one and with the international community and if the education system is improved. 

“Technology can make people lazy. Many people are already dependent and embrace this technology. Like students playing computer games instead of going to school or study. Technology also brings us privacy issues. From cell phone signal interceptions to email hacking, people are now worried about their once private information becoming public knowledge and making profit out of video scandals.”

Gray discusses the adverse effects technology, a science product, has had on human life and society. These include pollution, the inability to communicate properly, and laziness. 

She also acknowledges that technology has made life easier for almost everyone but believes that technology, as it is used now, is detrimental; more responsible use of technology is ideal.

“We must give scientists the opportunity through funding and time to pursue curiosity-based, long-term, basic-science research. Work that does not have direct ramifications for industry or our economy is also worthy. There’s no telling what can come from supporting a curious mind trying to discover something new.”

Strickland, a Nobel Prize winner, explains that a great scientific discovery can only come with ample time for scientists to research, using her work as an example. She describes her work on chirped pulse amplification and its possible applications, including removing brain tumors. Her Nobel-awarded work was done over a long time, and scientists must be afforded ample time and funding to make breakthroughs like hers. 

4.  ​​ The fact of cloning by Cesar Hill

“Any research into human cloning would eventually need to be tested on humans. Cloning might be used to create a “perfect human”. Cloning might have a detrimental effect family relationship. However the debate over cloning has more pros out weighting the cons, giving us a over site of the many advantages cloning has and the effects of it as well. Cloning has many ups and downs nevertheless there are many different ways in which it can be used to adapt and analyse new ways of medicine.”

Hill details both the pros and cons of cloning. It can be used for medical purposes and help us understand genetics more, perhaps even allowing us to prevent genetic diseases in children. However, it is expensive, and many oppose it on religious grounds. Regardless, Hill believes that the process has more advantages than disadvantages and is a net good. 

“For the kids who will throng this new exhibition, and who will adore this show’s colorful animations and fossilized dino poop, T. rex may still appear to be a thrilling monster. But staring in the eyes of the feather-flecked annihilators here, adults may have a more uncanny feeling of identification with the beasts at the pinnacle of the food chain. You can be a killer of unprecedented savagery, but the climate always takes the coup de grâce.”

In his essay, Farago reviews an exhibition on the Tyrannosaurus Rex involving an important scientific discovery: it was a feathered dinosaur. He details the different displays in the exhibition, including models of other dinosaurs that helped scientists realize that the T-Rex had feathers. 

“Understanding this mechanism is just one step in undoing forever chemicals, Dichtel’s team said. And more research is needed: There are other classes of PFAS that require their own solutions. This process wouldn’t work to tackle PFAS out in the environment, because it requires a concentrated amount of the chemicals. But it could one day be used in wastewater treatment plants, where the pollutants could be filtered out of the water, concentrated and then broken down.”

Coleman explains a discovery by which scientists were able to break down a perfluoroalkyl and polyfluoroalkyl substance, a “forever chemical” dangerous to the environment. He explains how they could break the chemical bond and turn the “forever chemical” into something harmless. This is important because pollution can be reduced significantly, particularly in the water. 

Writing Prompts on Essays about Science

“Science” is quite a broad term and encompasses many concepts and definitions. Define science, explain what it involves and how we can use it, and give examples of how it is present in the world. If you want, you can also briefly discuss what science means to you personally. 

Many individuals have made remarkable scientific discoveries, contributing to the wealth of knowledge we have acquired through science. For your essay, choose one scientist you feel has made a noteworthy contribution to their field. Then, give a brief background on the scientists and explain the discovery or invention that makes them essential. 

Consider what it means to study science: how is it relevant now? What lessons can we learn from science? Then, examine the presence of science in today’s world and write about the importance of science in our day-to-day lives- be sure to give examples to support your points. Finally, in your essay, be sure to keep in mind the times we are living in today.

Essays about science: Are robots a net positive for society

When we think of science, robots are often one of the first things that come to mind. However, there is much to discuss regarding safety, especially artificial intelligence. Discuss the pros and cons of robots and AI, then conclude whether or not the benefits outweigh the disadvantages. Finally, provide adequate evidence to reinforce your argument and explain it in detail. 

From biology to chemistry to physics, science has many branches, each dealing with different aspects of the world and universe. Choose one branch of science and then explain what it is, define basic concepts under this science, and give examples of how it is applied: Are any inventions requiring it? How about something we know today thanks to scientific discovery? Answer these questions in your own words for a compelling essay.

Undoubtedly, technology developed using science has had devastating effects, from nuclear weapons to self-flying fighter jets to deadly new guns and tanks. Examine scientific developments’ role in the war: Do they make it more brutal? Or do they reduce the casualties? Make sure to conduct ample research before writing your essay; this topic is debatable. 

For help with your essays, check out our round-up of the best essay checkers .

If you’re looking for inspiration, check out our round-up of essay topics about nature .

essay about a scientific

Martin is an avid writer specializing in editing and proofreading. He also enjoys literary analysis and writing about food and travel.

View all posts

  • For Authors
  • Collaboration
  • Privacy Policy

Atlas of Science

  • Conferences & Symposiums

Tools & Methods

How to successfully write a scientific essay.

Posted by Cody Rhodes

If you are undertaking a course which relates to science, you are more or less apt to write an essay on science. You need to know how to write a science essay irrespective of whether your professor gives you a topic or you come up with one. Additionally, you need to have an end objective in mind. Writing a science essay necessitates that you produce an article which has all the details and facts about the subject matter and it ought to be to the point. Also, you need to know and understand that science essays are more or less different from other types of essays. They require you to be analytical and precise when answering questions. Hence, this can be quite challenging and tiresome. However, that should not deter you from learning how to write your paper. You can always inquire for pre-written research papers for sale from writing services like EssayZoo.

Also, you can read other people’s articles and find out how they produce and develop unique and high-quality papers. Moreover, this will help you understand how to approach your essays in different ways. Nonetheless, if you want to learn how to write a scientific paper in a successful manner, consider the following tips.

How to successfully write a scientific essay

Select a topic for your article Like any other type of essay, you need to have a topic before you start the actual writing process. Your professor or instructor may give you a science essay topic to write about or ask you to come up with yours. When selecting a topic for your paper, ensure that you choose one you can write about. Do not pick a complex topic which can make the writing process boring and infuriating for you. Instead, choose one that you are familiar with. Select a topic you will not struggle gathering information about. Also, you need to have an interest in it. If you are unable to come up with a good topic, trying reading other people’s articles. This will help you develop a topic with ease.

Draft a plan After selecting a topic, the next step is drafting a plan or an outline. An outline is fundamental in writing a scientific essay as it is the foundation on which your paper is built. Additionally, it acts as a road map for your article. Hence, you need to incorporate all the thoughts and ideas you will include in your essay in the outline. You need to know what you will include in the introduction, the body, and the conclusion. Drafting a plan helps you save a lot of time when writing your paper. Also, it helps you to keep track of the primary objective of your article.

Start writing the article After drafting a plan, you can begin the writing process. Writing your paper will be smooth and easier as you have an outline which helps simplify the writing process. When writing your article, begin with a strong hook for your introduction. Dictate the direction your paper will take. Provide some background information and state the issue you will discuss as well as the solutions you have come up with. Arrange the body of your article according to the essay structure you will use to guide you. Also, ensure that you use transitory sentences to show the relationship between the paragraphs of your article. Conclude your essay by summarizing all the key points. Also, highlight the practical potential of our findings and their impacts.

Proofread and check for errors in the paper Before submitting or forwarding your article, it is fundamental that you proofread and correct all the errors that you come across. Delivering a paper that is full of mistakes can affect your overall performance in a negative manner. Thus, it is essential you revise your paper and check for errors. Correct all of them. Ask a friend to proofread your paper. He or she may spot some of the mistakes you did not come across.

In conclusion, writing a scientific essay differs from writing other types of papers. A scientific essay requires you to produce an article which has all the information and facts about the subject matter and it ought to be to the point. Nonetheless, the scientific essay formats similar to the format of any other essay: introduction, body, and conclusion. You need to use your outline to guide you through the writing process. To learn how to write a scientific essay in a successful manner, consider the tips above.

Download PDF

Related Articles:

2 responses to how to successfully write a scientific essay.

' src=

Hai…you have posted great article, it really helpful to us.. I will refer this page to my friends; I hope you will like to read – scientific research paper writing service

' src=

Nice concentration on education blogs. Such a great work regarding education and online study to gain knowledge and time.

Leave a Reply Cancel reply

You must be logged in to post a comment.

Top Keywords

Diabetes | Alzheimer’s disease Cancer | Breast cancer | Tumor Blood pressure | Heart Brain | Kidney | Liver | Lung Stress | Pain | Therapy Infection | Inflammation | Injury DNA | RNA | Receptor | Nanoparticles Bacteria | Virus | Plant

See more …

essay about a scientific

Proofread or Perish: Editing your scientific writing for successful publication

essay about a scientific

Lab Leader makes software applications for experiment design in life science

essay about a scientific

Cyagen Biosciences – Helping you choose the right animal model for your research

Labcollector lims and eln for improving productivity in the lab.

essay about a scientific

Image Cytometer – NucleoCounter® NC-3000™

Recent posts.

  • Does UV-B radiation modify gene expression?
  • Ferrate technology: an innovative solution for sustainable sewer and wastewater management
  • Sleep abnormalities in different clinical stages of psychosis
  • A compact high yield isotope enrichment system
  • Late second trimester miscarriages

Facebook

essay about a scientific

Writing the Scientific Paper

When you write about scientific topics to specialists in a particular scientific field, we call that scientific writing. (When you write to non-specialists about scientific topics, we call that science writing.)

The scientific paper has developed over the past three centuries into a tool to communicate the results of scientific inquiry. The main audience for scientific papers is extremely specialized. The purpose of these papers is twofold: to present information so that it is easy to retrieve, and to present enough information that the reader can duplicate the scientific study. A standard format with six main part helps readers to find expected information and analysis:

  • Title--subject and what aspect of the subject was studied.
  • Abstract--summary of paper: The main reason for the study, the primary results, the main conclusions
  • Introduction-- why the study was undertaken
  • Methods and Materials-- how the study was undertaken
  • Results-- what was found
  • Discussion-- why these results could be significant (what the reasons might be for the patterns found or not found)

There are many ways to approach the writing of a scientific paper, and no one way is right. Many people, however, find that drafting chunks in this order works best: Results, Discussion, Introduction, Materials & Methods, Abstract, and, finally, Title.

The title should be very limited and specific. Really, it should be a pithy summary of the article's main focus.

  • "Renal disease susceptibility and hypertension are under independent genetic control in the fawn hooded rat"
  • "Territory size in Lincoln's Sparrows ( Melospiza lincolnii )"
  • "Replacement of deciduous first premolars and dental eruption in archaeocete whales"
  • "The Radio-Frequency Single-Electron Transistor (RF-SET): A Fast and Ultrasensitive Electrometer"

This is a summary of your article. Generally between 50-100 words, it should state the goals, results, and the main conclusions of your study. You should list the parameters of your study (when and where was it conducted, if applicable; your sample size; the specific species, proteins, genes, etc., studied). Think of the process of writing the abstract as taking one or two sentences from each of your sections (an introductory sentence, a sentence stating the specific question addressed, a sentence listing your main techniques or procedures, two or three sentences describing your results, and one sentence describing your main conclusion).

Example One

Hypertension, diabetes and hyperlipidemia are risk factors for life-threatening complications such as end-stage renal disease, coronary artery disease and stroke. Why some patients develop complications is unclear, but only susceptibility genes may be involved. To test this notion, we studied crosses involving the fawn-hooded rat, an animal model of hypertension that develops chronic renal failure. Here, we report the localization of two genes, Rf-1 and Rf-2 , responsible for about half of the genetic variation in key indices of renal impairment. In addition, we localize a gene, Bpfh-1 , responsible for about 26% of the genetic variation in blood pressure. Rf-1 strongly affects the risk of renal impairment, but has no significant effect on blood pressure. Our results show that susceptibility to a complication of hypertension is under at least partially independent genetic control from susceptibility to hypertension itself.

Brown, Donna M, A.P. Provoost, M.J. Daly, E.S. Lander, & H.J. Jacob. 1996. "Renal disease susceptibility and hypertension are under indpendent genetic control in the faun-hooded rat." Nature Genetics , 12(1):44-51.

Example Two

We studied survival of 220 calves of radiocollared moose ( Alces alces ) from parturition to the end of July in southcentral Alaska from 1994 to 1997. Prior studies established that predation by brown bears ( Ursus arctos ) was the primary cause of mortality of moose calves in the region. Our objectives were to characterize vulnerability of moose calves to predation as influenced by age, date, snow depths, and previous reproductive success of the mother. We also tested the hypothesis that survival of twin moose calves was independent and identical to that of single calves. Survival of moose calves from parturition through July was 0.27 ± 0.03 SE, and their daily rate of mortality declined at a near constant rate with age in that period. Mean annual survival was 0.22 ± 0.03 SE. Previous winter's snow depths or survival of the mother's previous calf was not related to neonatal survival. Selection for early parturition was evidenced in the 4 years of study by a 6.3% increase in the hazard of death with each daily increase in parturition date. Although there was no significant difference in survival of twin and single moose calves, most twins that died disappeared together during the first 15 days after birth and independently thereafter, suggesting that predators usually killed both when encountered up to that age.

Key words: Alaska, Alces alces , calf survival, moose, Nelchina, parturition synchrony, predation

Testa, J.W., E.F. Becker, & G.R. Lee. 2000. "Temporal patterns in the survival of twin and single moose ( alces alces ) calves in southcentral Alaska." Journal of Mammalogy , 81(1):162-168.

Example Three

We monitored breeding phenology and population levels of Rana yavapaiensis by use of repeated egg mass censuses and visual encounter surveys at Agua Caliente Canyon near Tucson, Arizona, from 1994 to 1996. Adult counts fluctuated erratically within each year of the study but annual means remained similar. Juvenile counts peaked during the fall recruitment season and fell to near zero by early spring. Rana yavapaiensis deposited eggs in two distinct annual episodes, one in spring (March-May) and a much smaller one in fall (September-October). Larvae from the spring deposition period completed metamorphosis in earlv summer. Over the two years of study, 96.6% of egg masses successfully produced larvae. Egg masses were deposited during periods of predictable, moderate stream flow, but not during seasonal periods when flash flooding or drought were likely to affect eggs or larvae. Breeding phenology of Rana yavapaiensis is particularly well suited for life in desert streams with natural flow regimes which include frequent flash flooding and drought at predictable times. The exotic predators of R. yavapaiensis are less able to cope with fluctuating conditions. Unaltered stream flow regimes that allow natural fluctuations in stream discharge may provide refugia for this declining ranid frog from exotic predators by excluding those exotic species that are unable to cope with brief flash flooding and habitat drying.

Sartorius, Shawn S., and Philip C. Rosen. 2000. "Breeding phenology of the lowland leopard frog ( Rana yavepaiensis )." Southwestern Naturalist , 45(3): 267-273.

Introduction

The introduction is where you sketch out the background of your study, including why you have investigated the question that you have and how it relates to earlier research that has been done in the field. It may help to think of an introduction as a telescoping focus, where you begin with the broader context and gradually narrow to the specific problem addressed by the report. A typical (and very useful) construction of an introduction proceeds as follows:

"Echimyid rodents of the genus Proechimys (spiny rats) often are the most abundant and widespread lowland forest rodents throughout much of their range in the Neotropics (Eisenberg 1989). Recent studies suggested that these rodents play an important role in forest dynamics through their activities as seed predators and dispersers of seeds (Adler and Kestrell 1998; Asquith et al 1997; Forget 1991; Hoch and Adler 1997)." (Lambert and Adler, p. 70)

"Our laboratory has been involved in the analysis of the HLA class II genes and their association with autoimmune disorders such as insulin-dependent diabetes mellitus. As part of this work, the laboratory handles a large number of blood samples. In an effort to minimize the expense and urgency of transportation of frozen or liquid blood samples, we have designed a protocol that will preserve the integrity of lymphocyte DNA and enable the transport and storage of samples at ambient temperatures." (Torrance, MacLeod & Hache, p. 64)

"Despite the ubiquity and abundance of P. semispinosus , only two previous studies have assessed habitat use, with both showing a generalized habitat use. [brief summary of these studies]." (Lambert and Adler, p. 70)

"Although very good results have been obtained using polymerase chain reaction (PCR) amplification of DNA extracted from dried blood spots on filter paper (1,4,5,8,9), this preservation method yields limited amounts of DNA and is susceptible to contamination." (Torrance, MacLeod & Hache, p. 64)

"No attempt has been made to quantitatively describe microhabitat characteristics with which this species may be associated. Thus, specific structural features of secondary forests that may promote abundance of spiny rats remains unknown. Such information is essential to understand the role of spiny rats in Neotropical forests, particularly with regard to forest regeneration via interactions with seeds." (Lambert and Adler, p. 71)

"As an alternative, we have been investigating the use of lyophilization ("freeze-drying") of whole blood as a method to preserve sufficient amounts of genomic DNA to perform PCR and Southern Blot analysis." (Torrance, MacLeod & Hache, p. 64)

"We present an analysis of microhabitat use by P. semispinosus in tropical moist forests in central Panama." (Lambert and Adler, p. 71)

"In this report, we summarize our analysis of genomic DNA extracted from lyophilized whole blood." (Torrance, MacLeod & Hache, p. 64)

Methods and Materials

In this section you describe how you performed your study. You need to provide enough information here for the reader to duplicate your experiment. However, be reasonable about who the reader is. Assume that he or she is someone familiar with the basic practices of your field.

It's helpful to both writer and reader to organize this section chronologically: that is, describe each procedure in the order it was performed. For example, DNA-extraction, purification, amplification, assay, detection. Or, study area, study population, sampling technique, variables studied, analysis method.

Include in this section:

  • study design: procedures should be listed and described, or the reader should be referred to papers that have already described the used procedure
  • particular techniques used and why, if relevant
  • modifications of any techniques; be sure to describe the modification
  • specialized equipment, including brand-names
  • temporal, spatial, and historical description of study area and studied population
  • assumptions underlying the study
  • statistical methods, including software programs

Example description of activity

Chromosomal DNA was denatured for the first cycle by incubating the slides in 70% deionized formamide; 2x standard saline citrate (SSC) at 70ºC for 2 min, followed by 70% ethanol at -20ºC and then 90% and 100% ethanol at room temperature, followed by air drying. (Rouwendal et al ., p. 79)

Example description of assumptions

We considered seeds left in the petri dish to be unharvested and those scattered singly on the surface of a tile to be scattered and also unharvested. We considered seeds in cheek pouches to be harvested but not cached, those stored in the nestbox to be larderhoarded, and those buried in caching sites within the arena to be scatterhoarded. (Krupa and Geluso, p. 99)

Examples of use of specialized equipment

  • Oligonucleotide primers were prepared using the Applied Biosystems Model 318A (Foster City, CA) DNA Synthesizer according to the manufacturers' instructions. (Rouwendal et al ., p.78)
  • We first visually reviewed the complete song sample of an individual using spectrograms produced on a Princeton Applied Research Real Time Spectrum Analyzer (model 4512). (Peters et al ., p. 937)

Example of use of a certain technique

Frogs were monitored using visual encounter transects (Crump and Scott, 1994). (Sartorius and Rosen, p. 269)

Example description of statistical analysis

We used Wilcox rank-sum tests for all comparisons of pre-experimental scores and for all comparisons of hue, saturation, and brightness scores between various groups of birds ... All P -values are two-tailed unless otherwise noted. (Brawner et al ., p. 955)

This section presents the facts--what was found in the course of this investigation. Detailed data--measurements, counts, percentages, patterns--usually appear in tables, figures, and graphs, and the text of the section draws attention to the key data and relationships among data. Three rules of thumb will help you with this section:

  • present results clearly and logically
  • avoid excess verbiage
  • consider providing a one-sentence summary at the beginning of each paragraph if you think it will help your reader understand your data

Remember to use table and figures effectively. But don't expect these to stand alone.

Some examples of well-organized and easy-to-follow results:

  • Size of the aquatic habitat at Agua Caliente Canyon varied dramatically throughout the year. The site contained three rockbound tinajas (bedrock pools) that did not dry during this study. During periods of high stream discharge seven more seasonal pools and intermittent stretches of riffle became available. Perennial and seasonal pool levels remained stable from late February through early May. Between mid-May and mid-July seasonal pools dried until they disappeared. Perennial pools shrank in surface area from a range of 30-60 m² to 3-5- M². (Sartorius and Rosen, Sept. 2000: 269)

Notice how the second sample points out what is important in the accompanying figure. It makes us aware of relationships that we may not have noticed quickly otherwise and that will be important to the discussion.

A similar test result is obtained with a primer derived from the human ß-satellite... This primer (AGTGCAGAGATATGTCACAATG-CCCC: Oligo 435) labels 6 sites in the PRINS reaction: the chromosomes 1, one pair of acrocentrics and, more weakly, the chromosomes 9 (Fig. 2a). After 10 cycles of PCR-IS, the number of sites labeled has doubled (Fig. 2b); after 20 cycles, the number of sites labeled is the same but the signals are stronger (Fig. 2c) (Rouwendal et al ., July 93:80).

Related Information: Use Tables and Figures Effectively

Do not repeat all of the information in the text that appears in a table, but do summarize it. For example, if you present a table of temperature measurements taken at various times, describe the general pattern of temperature change and refer to the table.

"The temperature of the solution increased rapidly at first, going from 50º to 80º in the first three minutes (Table 1)."

You don't want to list every single measurement in the text ("After one minute, the temperature had risen to 55º. After two minutes, it had risen to 58º," etc.). There is no hard and fast rule about when to report all measurements in the text and when to put the measurements in a table and refer to them, but use your common sense. Remember that readers have all that data in the accompanying tables and figures, so your task in this section is to highlight key data, changes, or relationships.

In this section you discuss your results. What aspect you choose to focus on depends on your results and on the main questions addressed by them. For example, if you were testing a new technique, you will want to discuss how useful this technique is: how well did it work, what are the benefits and drawbacks, etc. If you are presenting data that appear to refute or support earlier research, you will want to analyze both your own data and the earlier data--what conditions are different? how much difference is due to a change in the study design, and how much to a new property in the study subject? You may discuss the implication of your research--particularly if it has a direct bearing on a practical issue, such as conservation or public health.

This section centers on speculation . However, this does not free you to present wild and haphazard guesses. Focus your discussion around a particular question or hypothesis. Use subheadings to organize your thoughts, if necessary.

This section depends on a logical organization so readers can see the connection between your study question and your results. One typical approach is to make a list of all the ideas that you will discuss and to work out the logical relationships between them--what idea is most important? or, what point is most clearly made by your data? what ideas are subordinate to the main idea? what are the connections between ideas?

Achieving the Scientific Voice

Eight tips will help you match your style for most scientific publications.

  • Develop a precise vocabulary: read the literature to become fluent, or at least familiar with, the sort of language that is standard to describe what you're trying to describe.
  • Once you've labeled an activity, a condition, or a period of time, use that label consistently throughout the paper. Consistency is more important than creativity.
  • Define your terms and your assumptions.
  • Include all the information the reader needs to interpret your data.
  • Remember, the key to all scientific discourse is that it be reproducible . Have you presented enough information clearly enough that the reader could reproduce your experiment, your research, or your investigation?
  • When describing an activity, break it down into elements that can be described and labeled, and then present them in the order they occurred.
  • When you use numbers, use them effectively. Don't present them so that they cause more work for the reader.
  • Include details before conclusions, but only include those details you have been able to observe by the methods you have described. Do not include your feelings, attitudes, impressions, or opinions.
  • Research your format and citations: do these match what have been used in current relevant journals?
  • Run a spellcheck and proofread carefully. Read your paper out loud, and/ or have a friend look over it for misspelled words, missing words, etc.

Applying the Principles, Example 1

The following example needs more precise information. Look at the original and revised paragraphs to see how revising with these guidelines in mind can make the text clearer and more informative:

Before: Each male sang a definite number of songs while singing. They start with a whistle and then go from there. Each new song is always different, but made up an overall repertoire that was completed before starting over again. In 16 cases (84%), no new songs were sung after the first 20, even though we counted about 44 songs for each bird.
After: Each male used a discrete number of song types in his singing. Each song began with an introductory whistle, followed by a distinctive, complex series of fluty warbles (Fig. 1). Successive songs were always different, and five of the 19 males presented their entire song repertoire before repeating any of their song types (i.e., the first IO recorded songs revealed the entire repertoire of 10 song types). Each song type recurred in long sequences of singing, so that we could be confident that we had recorded the entire repertoire of commonly used songs by each male. For 16 of the 19 males, no new song types were encountered after the first 20 songs, even though we analyzed and average of 44 songs/male (range 30-59).

Applying the Principles, Example 2

In this set of examples, even a few changes in wording result in a more precise second version. Look at the original and revised paragraphs to see how revising with these guidelines in mind can make the text clearer and more informative:

Before: The study area was on Mt. Cain and Maquilla Peak in British Columbia, Canada. The study area is about 12,000 ha of coastal montane forest. The area is both managed and unmanaged and ranges from 600-1650m. The most common trees present are mountain hemlock ( Tsuga mertensiana ), western hemlock ( Tsuga heterophylla ), yellow cedar ( Chamaecyparis nootkatensis ), and amabilis fir ( Abies amabilis ).
After: The study took place on Mt. Cain and Maquilla Peak (50'1 3'N, 126'1 8'W), Vancouver Island, British Columbia. The study area encompassed 11,800 ha of coastal montane forest. The landscape consisted of managed and unmanaged stands of coastal montane forest, 600-1650 m in elevation. The dominant tree species included mountain hemlock ( Tsuga mertensiana ), western hemlock ( Tsuga heterophylla ), yellow cedar ( Chamaecyparis nootkatensis ), and amabilis fir ( Abies amabilis ).

Two Tips for Sentence Clarity

Although you will want to consider more detailed stylistic revisions as you become more comfortable with scientific writing, two tips can get you started:

First, the verb should follow the subject as soon as possible.

Really Hard to Read : "The smallest of the URF's (URFA6L), a 207-nucleotide (nt) reading frame overlapping out of phase the NH2- terminal portion of the adenosinetriphosphatase (ATPase) subunit 6 gene has been identified as the animal equivalent of the recently discovered yeast H+-ATPase subunit gene."

Less Hard to Read : "The smallest of the UR-F's is URFA6L, a 207-nucleotide (nt) reading frame overlapping out of phase the NH2-terminal portion of the adenosinetriphosphatase (ATPase) subunit 6 gene; it has been identified as the animal equivalent of the recently discovered yeast H+-ATPase subunit 8 gene."

Second, place familiar information first in a clause, a sentence, or a paragraph, and put the new and unfamiliar information later.

More confusing : The epidermis, the dermis, and the subcutaneous layer are the three layers of the skin. A layer of dead skin cells makes up the epidermis, which forms the body's shield against the world. Blood vessels, carrying nourishment, and nerve endings, which relay information about the outside world, are found in the dermis. Sweat glands and fat cells make up the third layer, the subcutaneous layer.

Less confusing : The skin consists of three layers: the epidermis, the dermis, and the subcutaneous layer. The epidermis is made up of dead skin cells, and forms a protective shield between the body and the world. The dermis contains the blood vessels and nerve endings that nourish the skin and make it receptive to outside stimuli. The subcutaneous layer contains the sweat glands and fat cells which perform other functions of the skin.

Bibliography

  • Scientific Writing for Graduate Students . F. P. Woodford. Bethesda, MD: Council of Biology Editors, 1968. [A manual on the teaching of writing to graduate students--very clear and direct.]
  • Scientific Style and Format . Council of Biology Editors. Cambridge: Cambridge University Press, 1994.
  • "The science of scientific writing." George Gopen and Judith Swann. The American Scientist , Vol. 78, Nov.-Dec. 1990. Pp 550-558.
  • "What's right about scientific writing." Alan Gross and Joseph Harmon. The Scientist , Dec. 6 1999. Pp. 20-21.
  • "A Quick Fix for Figure Legends and Table Headings." Donald Kroodsma. The Auk , 117 (4): 1081-1083, 2000.

Wortman-Wunder, Emily, & Kate Kiefer. (1998). Writing the Scientific Paper. Writing@CSU . Colorado State University. https://writing.colostate.edu/resources/writing/guides/.

Browse Course Material

Course info.

  • Karen Boiko

Departments

  • Comparative Media Studies/Writing

As Taught In

  • Academic Writing
  • Creative Writing
  • Nonfiction Prose

Learning Resource Types

The science essay, course description.

Photo of several Scottish Highland cattle.

You are leaving MIT OpenCourseWare

Writing an Introduction for a Scientific Paper

Dr. michelle harris, dr. janet batzli, biocore.

This section provides guidelines on how to construct a solid introduction to a scientific paper including background information, study question , biological rationale, hypothesis , and general approach . If the Introduction is done well, there should be no question in the reader’s mind why and on what basis you have posed a specific hypothesis.

Broad Question : based on an initial observation (e.g., “I see a lot of guppies close to the shore. Do guppies like living in shallow water?”). This observation of the natural world may inspire you to investigate background literature or your observation could be based on previous research by others or your own pilot study. Broad questions are not always included in your written text, but are essential for establishing the direction of your research.

Background Information : key issues, concepts, terminology, and definitions needed to understand the biological rationale for the experiment. It often includes a summary of findings from previous, relevant studies. Remember to cite references, be concise, and only include relevant information given your audience and your experimental design. Concisely summarized background information leads to the identification of specific scientific knowledge gaps that still exist. (e.g., “No studies to date have examined whether guppies do indeed spend more time in shallow water.”)

Testable Question : these questions are much more focused than the initial broad question, are specific to the knowledge gap identified, and can be addressed with data. (e.g., “Do guppies spend different amounts of time in water <1 meter deep as compared to their time in water that is >1 meter deep?”)

Biological Rationale : describes the purpose of your experiment distilling what is known and what is not known that defines the knowledge gap that you are addressing. The “BR” provides the logic for your hypothesis and experimental approach, describing the biological mechanism and assumptions that explain why your hypothesis should be true.

The biological rationale is based on your interpretation of the scientific literature, your personal observations, and the underlying assumptions you are making about how you think the system works. If you have written your biological rationale, your reader should see your hypothesis in your introduction section and say to themselves, “Of course, this hypothesis seems very logical based on the rationale presented.”

  • A thorough rationale defines your assumptions about the system that have not been revealed in scientific literature or from previous systematic observation. These assumptions drive the direction of your specific hypothesis or general predictions.
  • Defining the rationale is probably the most critical task for a writer, as it tells your reader why your research is biologically meaningful. It may help to think about the rationale as an answer to the questions— how is this investigation related to what we know, what assumptions am I making about what we don’t yet know, AND how will this experiment add to our knowledge? *There may or may not be broader implications for your study; be careful not to overstate these (see note on social justifications below).
  • Expect to spend time and mental effort on this. You may have to do considerable digging into the scientific literature to define how your experiment fits into what is already known and why it is relevant to pursue.
  • Be open to the possibility that as you work with and think about your data, you may develop a deeper, more accurate understanding of the experimental system. You may find the original rationale needs to be revised to reflect your new, more sophisticated understanding.
  • As you progress through Biocore and upper level biology courses, your rationale should become more focused and matched with the level of study e ., cellular, biochemical, or physiological mechanisms that underlie the rationale. Achieving this type of understanding takes effort, but it will lead to better communication of your science.

***Special note on avoiding social justifications: You should not overemphasize the relevance of your experiment and the possible connections to large-scale processes. Be realistic and logical —do not overgeneralize or state grand implications that are not sensible given the structure of your experimental system. Not all science is easily applied to improving the human condition. Performing an investigation just for the sake of adding to our scientific knowledge (“pure or basic science”) is just as important as applied science. In fact, basic science often provides the foundation for applied studies.

Hypothesis / Predictions : specific prediction(s) that you will test during your experiment. For manipulative experiments, the hypothesis should include the independent variable (what you manipulate), the dependent variable(s) (what you measure), the organism or system , the direction of your results, and comparison to be made.

If you are doing a systematic observation , your hypothesis presents a variable or set of variables that you predict are important for helping you characterize the system as a whole, or predict differences between components/areas of the system that help you explain how the system functions or changes over time.

Experimental Approach : Briefly gives the reader a general sense of the experiment, the type of data it will yield, and the kind of conclusions you expect to obtain from the data. Do not confuse the experimental approach with the experimental protocol . The experimental protocol consists of the detailed step-by-step procedures and techniques used during the experiment that are to be reported in the Methods and Materials section.

Some Final Tips on Writing an Introduction

  • As you progress through the Biocore sequence, for instance, from organismal level of Biocore 301/302 to the cellular level in Biocore 303/304, we expect the contents of your “Introduction” paragraphs to reflect the level of your coursework and previous writing experience. For example, in Biocore 304 (Cell Biology Lab) biological rationale should draw upon assumptions we are making about cellular and biochemical processes.
  • Be Concise yet Specific: Remember to be concise and only include relevant information given your audience and your experimental design. As you write, keep asking, “Is this necessary information or is this irrelevant detail?” For example, if you are writing a paper claiming that a certain compound is a competitive inhibitor to the enzyme alkaline phosphatase and acts by binding to the active site, you need to explain (briefly) Michaelis-Menton kinetics and the meaning and significance of Km and Vmax. This explanation is not necessary if you are reporting the dependence of enzyme activity on pH because you do not need to measure Km and Vmax to get an estimate of enzyme activity.
  • Another example: if you are writing a paper reporting an increase in Daphnia magna heart rate upon exposure to caffeine you need not describe the reproductive cycle of magna unless it is germane to your results and discussion. Be specific and concrete, especially when making introductory or summary statements.

Where Do You Discuss Pilot Studies? Many times it is important to do pilot studies to help you get familiar with your experimental system or to improve your experimental design. If your pilot study influences your biological rationale or hypothesis, you need to describe it in your Introduction. If your pilot study simply informs the logistics or techniques, but does not influence your rationale, then the description of your pilot study belongs in the Materials and Methods section.  

How will introductions be evaluated? The following is part of the rubric we will be using to evaluate your papers.

cropped-YSM-Wordmark-Only-Black-High-Res.png

Winning Essays

[vc_row][vc_column width=”1/1″][vc_button2 title=”Go back” style=”square” color=”sky” size=”sm” link=”url:http%3A%2F%2Fwww.yalescientific.org%2Fsynapse%2Fcontest-winners%2F|title:Contest%20Winners|”][vc_empty_space height=”32px”][vc_column_text css_animation=”top-to-bottom” el_class=”winning-essays”]

Congratulations to the winner of the 2019 Yale Scientific Synapse High School Essay Contest!

This year’s essay prompt was:

There is a moment that defines success, that “ah-ha” moment when the barrier of your expectations of what is possible to achieve is shattered. Yet, for every Nobel Prize success story or every innovation that is deemed media frenzy worthy, there are hundreds of breakthroughs that go unnoticed by the general public. Choose an important but under-discussed breakthrough from the past 5 years, and describe why it is so significant.

Entangled in a Quantum Future

1st Place Winner, Yale Scientific Magazine National Essay Competition 2019 Kelvin Kim Bergen Catholic High School, Oradell, NJ

The rate of discovery in science has accelerated dramatically since the 20th century. This should not be surprising since our knowledge base doubles approximately every 13 months. Some scientists even predict that the “internet of things” will lead to even more dramatic accelerations. Many of these advancements have gained widespread recognition while others are relatively unknown to the general public.

For example, Chinese researchers at Shanghai’s University of Science and Technology made advances on data teleportation based on quantum entanglement but remained underrecognized. In 2017, this team, led by Ji-Gang Ren, shattered previous distance records for such teleportation experiments. The previous record, set in 2015, achieved successful transmissions using 104 kilometers of superconducting molybdenum silicide fiber. Firing a high-altitude laser from Tibet to the orbiting Micius satellite, the Chinese team achieved successful transmissions over distances up to 1400 kilometers. Later, they successfully transmitted quantum data from the satellite back to Earth at distances ranging from 1600 to 2400 kilometers. In doing so, they demonstrated the viability of someday being able to create a “quantum internet,” over which information could be exchanged far more securely than is possible today.

The phrase quantum teleportation is somewhat misleading. In the Chinese experiments, no particles were physically teleported from Earth to space like most people might imagine after watching sci-fi programs like Star Trek . “Quantum teleportation” involves information, not matter. To grasp this, we need to understand the basic nature of quantum entanglement.

Quantum entanglement is a way of describing two particles with matching quantum states. The states in question, of which there are four possibilities, have to do with vertical or horizontal polarization. The entangled particles are linked in such a way as to mutually influence one another. Moreover, when one particle is observed, information about the other can be known. These effects hold true even if the entangled particles are separated by great distances.

Dr. Chien-Shiung Wu first experimentally demonstrated quantum entanglement in a laboratory, showing an Einstein-type correlation between two photons that were well separated from one another. Back then, all she could do was show correlations between entangled photons separated by a small distance. The experiment conducted by Dr. Ren’s team in 2017 is fundamentally the same as the experiment that was conducted by Dr. Wu almost seventy years ago. However, the Chinese researchers’ achievement is significant because they strove to do what Dr. Wu did at a far greater scale. Instead of performing the experiment in a laboratory, the Chinese physicists demonstrated entanglement between a photon on Earth and a photon on an orbiting satellite. These particles were separated by distances of at least 500 kilometers—the greatest distances that quantum entanglement have ever been recorded. This accomplishment was all the more impressive as it was achieved using detectors on a satellite that was traveling around Earth at orbital speeds.

Quantum entanglement means that data can seemingly be “teleported” since the information about one of the particles in an entangled pair will always reflect information relevant to the other particle. This is the main concept behind the potential applications being investigated by scientists. While nothing may be physically teleported, the fact that information about an object can be accessed instantaneously from anywhere has significant implications for the future.

One potential application of this concept is the quantum internet. The researchers showed that working with entangled particles while they are separated and moving at fast speeds is possible. This could provide a means of ensuring data security. Since the mere act of observing a particle changes its quantum properties, recipients of information over a quantum network could instantly know, by comparing the state of the paired particle at the point of transmission to that of its partner at the point of reception, not only if a message had been decrypted, but even if it had been merely observed. To this end, the Chinese scientists—in collaboration with European partners at the University of Vienna and the Austrian Academy of Sciences—aim to establish a secure quantum-encrypted channel by next year, and a global network in the following decade.

It is not surprising that the first practical applications of quantum entanglement are expected to appear in the realm of cyber-security. The regular internet is vulnerable to hacking because data still flows through cables in the form of bits, into which the hacker can tap and decrypt. A bit can either represent a zero or a one, but not both at the same time. The quantum internet, on the other hand, doesn’t have this problem because it utilizes qubits, a quantum state a particle is in when it represents both zero and one simultaneously. If a hacker tried to access a stream of qubits, the qubits would seem to have values that are either zero or one, but not both. This means that by trying to access information in the stream of qubits, the hacker would just end up destroying the data he is trying to hack.

Beyond this, the term “quantum internet” doesn’t actually have a clear definition. “Quantum internet is still a vague term,” explains physicist Thomas Jennewein of the University of Waterloo.

In summary, the research being conducted by Dr. Ren, his colleagues, and their European partners on data teleportation via quantum entanglement is significant because it represents the scaling-up of this technology to the point where its practical application is imminent. Before 2017, no previous experiments in this field had been done over comparable distances with such reliable results. The fact that global partners are planning to establish secure quantum channels based on these experiments in the near future ensures not only that such networks will soon be a global reality, but also that scientists will be delving ever deeper into the mystery of quantum entanglement. This research places humanity on the threshold of a new world of quantum applications that we can scarcely imagine today.

Congratulations to the winners of the 2018 Yale Scientific Synapse High School Essay Contest!

A Plantastic Solution to an Aqueous Problem

By John Lin

Water covers about 71 percent of Earth’s surface, but throughout the world, this natural resource appears to be drying up.1​ ​Due to global warming, desertification is rapidly spreading across the world. The world is finding that critical freshwater reserves are disappearing in the face of increasing population growth.2​ ​Just as more water is needed, less water is available. However, cacti have dealt with this problem for millennia and have adapted to arid climates. We can learn from these prickly plants to solve one of the world’s most pressing problems.

Our current stopgap measures are failing. Most modern water storage methods use jerry cans, lidded buckets, and clay pots but require backbreaking labor that is predominantly done by females.3​ ​UNICEF estimates that across the world, women and girls spend 200 million hours collecting water each day, forcing them to abandon their education and employment and enter a cycle of poverty and dependence.4​ ​Additionally, this water is often dirty, resulting in major waterborne disease outbreaks that devastate developing nations, Finally, these buckets require a tradeoff between water supplies, temperature, and sanitation. For example, clay pots lose water to evaporation but are cooler.5​ ​On the other hand, buckets create a warm environment ripe for bacteria growth.

Instead of using costly chemical reactions to synthesize hydrogen and oxygen, scientists can find a cheap solution in biomimicry. Succulent plants are uniquely adapted to absorb and retain water from their arid surroundings. Learning from them will help us efficiently deal with desertification and minimize water conflicts. Cacti are among the most effective succulents, surviving in habitats from the Atacama Desert to the Patagonian steppe.6​ ​Semiarid and arid areas experience varying levels of rainfall, demanding different tissue thicknesses and structural designs. We should study cacti to produce location-specific containers that can absorb and store safe water at optimal temperatures.

Scientists should explore water retrieval methods including cacti’s water absorption. Cacti build shallow roots that can branch out, allowing them to react quickly to rainfall.7​ ​We can utilize capillary action, much like plant roots, to gather water at a cheap energy cost. Researchers at the Chinese Academy of the Sciences are studying artificial root systems that could store rainwater.8​ ​Some cacti also store fog water, thanks to spines that collect water molecules. Scientists from Beihang University are already developing similar structures by electrospinning polyimide and polystyrene.9​ ​Moreover, this could help improve filtration systems. Dr. Norma Alcantar from the University of South Florida found that prickly pear cactus gum effectively removes sediment and bacteria from water.1​ 0​ We could eliminate common diseases, free women to pursue studies, leisure, or careers, and save millions of lives.

Researchers can also improve water storage by focusing on cacti because of their high water retention. Because of their fleshy tissue, many cacti can hold large amounts of water. In fact, Charles Gritzner, Distinguished Professor Emeritus of Geography at South Dakota State University, notes that some can store up to 2 tons of water, or 1,800 liters.1​ 1​ We can learn from their thick structures to maximize the quantity of water stored. Cacti also have unique structural designs including protective hair to deflect sunlight, which defends against dangerous heat levels.1​ 2​ Cacti have additionally developed waxy skin to prevent water loss.1​ 3​ We can combine this with biodegradable material to promote environmental sustainability by avoiding plastic. These innovations fix the current temperature-water loss tradeoff and maximize utility.

This large, bulky bucket would be incredibly adaptable. In foggier areas like the Atacama Desert, artificial spines would help collect water, while mechanical roots would work better in drier places. The layer of gum-like lining on the inner walls of the pail would improve sanitation. The water would be protected from heat through intricate designs of folds and hair. The outer waxy coating would help preserve water while maintaining cooler temperatures. Humanitarian organizations could distribute this in developing nations, ensuring that each family has a stable, safe source of water.

The consequences of ignoring water shortages are dire because water is the most precious resource of life. Not only is approximately 60 percent of the adult human body made of water, each American uses around 80-100 gallons of water every day.1​ 4,15​ This has promoted hygiene and eliminated disease outbreaks, with handwashing alone reducing diarrheal disease-related deaths by almost 50%.1​ 6​ With antibiotic-resistant bacteria developing rapidly, hygiene is critical for public health. Water is also heavily used in food production, irrigating 62.4 million acres of American cropland in 2010.1​ 7​ Agriculture accounts for 70% of freshwater withdrawals each year.1​ 8​ As global warming intensifies regional climates, more water is needed. Otherwise, the world would be torn apart by hunger and thirst.

Losing water will also have major geopolitical implications. The World Economic Forum has ranked water crises among the five most impactful global issues for the past four years.1​ 9​ As countries compete for an ever-shrinking supply of water, wars are bound to break out. The Global Policy Forum predicts that more than 50 countries across five continents will likely be forced into water conflicts.2​ 0​ Already, nuclear armed states such as India and Pakistan engage in water fights.2​ 1​ The resulting wars could claim billions of innocent human lives.

Although more advanced technology is being developed, biomimicry provides a cheap, clean, and quick answer to the billions of people surviving on inadequate and unsafe water. Unless we take action, water wars, food shortages, and disease outbreaks will tear the world apart. For the sake of humanity’s survival, we must turn to cacti to guide our water foraging efforts in the developing world.

Congratulations to the winners of the 2017 Yale Scientific Synapse High School Essay Contest!

If Science were to make a huge breakthrough in the next year, what do you think would be the most beneficial one to society? Why?

Breaking Through Ocean Acidification

1st Place Winner, Yale Scientific Magazine National Essay Competition 2017 Clara Benadon Poolesville High School, MD

As a Marylander, one of my favorite things to do is make the trek up to the Chesapeake Bay. Its sparkling waters and abundant wildlife set it apart as a prime jewel of the East Coast. Nothing can compare to the experience of paddling down the Potomac River on a sunny day, the boughs of a sycamore arching overhead.

Apart from being a stunner, the Bay provides major cultural and economic benefits. Its unique way of life is perfectly encapsulated in the small towns of Smith Island, where watermen make a living from the estuary’s riches. On a recent visit, one local said to me, “We truly build our lives around the water.” From the local fisherman to larger commercial operations, the Chesapeake provides $3.39 billion annually in seafood sales alone, part of a total economic value topping $1 trillion. The stability of these waters is endangered by the growing problem of ocean acidification. This occurs when the carbon dioxide in the atmosphere is absorbed into bodies of water, causing surging acidity levels. Acidification leads to the protective carbonate coverings of shellfish to disintegrate, killing off large amounts of oysters, mussels, and scallops. Oyster reefs filter the Bay; without a thriving population, harmful pollutants run rampant. The low oxygen conditions caused by high acidity also make it hard for fish to breathe. Even with survivable oxygen levels, low pH can be fatal for fish.

The plummeting numbers of these Chesapeake staples make a dent on the economy. According to the Chesapeake Bay Foundation, Maryland and Virginia have suffered losses exceeding $4 billion over the last three decades stemming from the decline of oyster health and distribution. High acidity causes oysters’ growth to be stunted, so that shellfish fisheries cannot profit from the smaller, thinner shells.

The losses aren’t economic alone. An estimated 2,700 species call the Bay their home, a remarkable level of biodiversity that is threatened by ocean acidification. The loss of even one species causes a ripple effect through the entire food web, sending it into a state of unbalance.  According to a 2004 study in Science, the survival of threatened and nonthreatened species is closely intertwined: when an endangered species goes extinct, dependent ones suffer. Moreover, biodiversity keeps in check the amount of carbon dioxide in any body of water. Zoom out from the Chesapeake to the world ocean. Skyrocketing acidity is present in almost every aquatic biome on our planet. When pH is low, coral reefs cannot absorb the calcium carbonate that makes up their skeleton. Corals, along with snails, clams, and urchins, disintegrate en masse. A particularly disturbing image of ocean acidification is its effect on the neurology of fish. Their decision making skills are significantly delayed to the level where they sometimes swim directly into the jaws of predators.

Economically, the UN estimates that ocean acidification will take a $1 trillion bite out of the world economy by the year 2100. This massive cost has direct human implications, including health, job security, and cultural heritage. In addition, the economies of many countries are wholly dependent upon reef based tourism and other activities built around the water.

We need a solution to our world’s rapidly acidifying oceans. If science were to make a major breakthrough, solving this problem would be beneficial to our economy and ecology on an unprecedented scale. Methods that at first appeared brilliant have either been limited by their feasibility or come to be outweighed by their negative side effects, ultimately prolonging the search for a solution.

The unorthodox method of dumping enormous amounts of iron sulphate into the water is based on the principle that iron fertilizes phytoplankton, microscopic organisms found in every body of water. The energy phytoplankton gain from the iron allows them to bloom, absorbing CO 2 from the atmosphere and the ocean. When the phytoplankton die they sink to the bottom of the ocean, locking the CO 2 there for centuries. In 1988, the late oceanographer John Martin proclaimed, “Give me a half tanker of iron, and I will give you an ice age.” It is theorized that fertilizing 2% of the Southern Ocean could set back global warming by 10 years.

Why not implement this magic fix? First off, iron fertilization has come under fire for its negative side effects. A 2016 study in Nature determined that the planktonic blooms would deplete the waters of necessary nutrients. Additionally, when the large bloom dies, it would create large “dead zones,” areas devoid of oxygen and life. Side effects aside, this technique may be entirely ineffective. Carbon dioxide may simply move up the food chain when the phytoplankton are eaten and be respired back into the water. This was observed when the 2009 Lohafex expedition unloaded six tons of iron off the Southern Atlantic. The desired phytoplankton bloom it caused was promptly gobbled up by miniscule organisms known as copepods.

The alternative solution of planting kelp is less drastic. Revitalizing expansive forests of algae has proven to be effective in sucking up underwater CO 2 . Kelp grows as quickly as 18 inches a day, and once established offers the added benefits of providing a habitat for marine species and removing anthropogenic nutrient pollution. Researchers from the Puget Sound Restoration Fund, who have been monitoring the capability of this process, have found that kelp forests are effective at diminishing acidification on a local scale. While planting carbonsucking species across the ocean would not be a feasible global solution, kelp forests could help solve the acidification crises found in less expansive areas.

To date, there is not one straightforward fix to combat ocean acidification and its corrosive effects. If a scientific breakthrough were to occur, it would perhaps be comprised of a combination of methods. However, as science and technology continuously evolve, the key to deacidifying our oceans may well turn out to be something beyond our wildest dreams.

A Revolutionary Combatant to Global Warming

2nd Place Winner, Yale Scientific Magazine National Essay Competition 2017 Arjun Marwaha Fairmont Schools, Anaheim CA

Accelerated industrialization and incredible innovation by the human species has completely morphed our 4.54 billion year-old planetary home in just a few centuries. Through feats of agriculture and language, humans have profoundly suggested superiority over all domains that dwell on Earth. Just recently, the culmination of human capability appears evident; through scientific means such as CRISPR’s gene splicing technique and Elon Musk’s inconceivable vision to send people around the moon, humanity is on the verge of a new creation: a feasible “dominance” over our galaxy.

Nonetheless, several ramifications have scarred our Earth ever since humans have undertook these robust, industrial actions. As first priority, scientists should direct their focus onto preserving our planet from the cataclysmic effects of the greenhouse effect — the trapped carbon dioxide gas in Earth’s atmosphere which thereby generates additional heat into our planet. This can be achieved by developing a renewable energy-based device to chemically convert carbon dioxide into clean products, which in turn will inherently benefit our environment and most definitely the society with the future generation of useful, renewable products.

One prominent solar example of this was physically engineered at the University of Illinois in Chicago, by mechanical engineer Amin Salehi-Khojin, in July of 2016. In their prototyping phase, the research team was able to construct a device that can absorb carbon dioxide, utilize sunlight to break CO2 into “syngas” (gas similar to hydrogen and carbon monoxide), and then use this synthesized gas directly as diesel or be turned into other liquid fuels. Just from this experiment alone, it is discernible that the potential to create such a device to eliminate the excess carbon dioxide exists within the scientific community; thus one can expect multiple breakthroughs in this field in the coming year alone, from solar to maybe even wind based technology. Furthermore, this prototype exemplifies the truly infinite possibilities that renewable energy sources can harness by converting the harmful gas into beneficial compounds.

Indisputably, this methodology has positive consequences, with little to no risk, hence producing an overall positive for both the Earth’s maintenance, and all animals and humans in regards to air quality. However, one may argue that this “breakthrough” has existed for epochs: plants, as they convert the carbon dioxide from the air into valuable sugars through the cyclical, self-sufficient process known as photosynthesis. But due to recent industrialization leading to deforestation, plants in general are becoming more and more rare in an industrial-based city. So without having the plants absorb the toxins and carbon dioxide in the air, the breeding ground for extreme pollution in cities, like New Delhi, India, exists. This eventually triggers an urgent necessity for renewable methods to get rid of these pollutants and toxins; and if plants cease to exist in harsh climates where toxins exist, then this innovative technique of splitting the carbon dioxide into useful products surely will have the ability to stay in industrial cities like these; and if they have capability to withstand the worst toxins, they surely will have the staying power in the international market.

In addition to its efficiency, the mere utilization of such a technology will sincerely resonate with the scientific community. Since numerous attempts have been made by scientists to find sustainable solutions to the greenhouse effect, the community — and more so the public — are desperate for a panacea. This solution not only thrives off the absorption of carbon dioxide, but it also creates several efficient products including but not limited to gaseous compounds that can provide liquid fuel or diesel, thereby acting as a detriment to further carbon emissions. Now, the world has seen this technology exist in one small laboratory. Through extensive research on maximizing the utility of the materials, the next massive breakthrough will be attempting to scale this technology to the international market, while ensuring that this device can be inexpensive as possible so that the scientific community can make some slot of profit. For this effective cost and efficient design, this device can essentially gain international acclaim after scientists give their approval to showcase a brand of these carbon emission combatants, all of which exist in different shape or form but run on renewable, green energy.

Without a cast of a doubt, the renewably-energized devices will completely revolutionize our approach to global warming. By developing a method that can concurrently reduce the carbon dioxide emissions and generating “split” products that promote green energy, the scientific community would absolutely gain the same recognition of this breakthrough as, for instance, circulating two men around the moon. This ideology, in effect, prompts people to question who they really are. Scientists are curious and explorative. But can they halt this mindset and instead focus on a more impeding dynamic: introspection of our character. Thus, it is only ethically sound that we as humans understand one blatant reality: our curiosity has, in essence, disrupted the nature of our Earth. So, it is only morally correct that we humans disband from our brigades in space, leave the hospital’s dissections and illnesses, and truly save our only home known to man.

Congratulations to the winners of the third Yale Scientific Synapse High School Essay Contest!

This year’s essay prompt was: “How does bias affect the course of scientific research? Discuss how public and personal bias has hindered and facilitated scientific progress.”

The Duality of Bias

By rocel beatriz balmes 1st place winner, yale scientific magazine national essay competition 2014 haines city high school lake alfred, florida.

Traditionally defined as a partiality towards particular people, objects, or beliefs, bias has developed a rather negative connotation—particularly in science—of resulting in unfair advantages and, thus, inaccurate results. Though this has, in effect, rendered it equivalent to a social pariah to the scientific community, throughout the years, it has persisted as a definitive barrier to scientific and social progress.

Take, for example, the emergence of “Social Darwinism” in the late 1800s. Despite the fact that Darwin focused only on biological evidence in animals and seldom mentioned ramifications for humans, public bias took the words of famed eugenicist Francis Galton and perpetuated the idea of a biologically superior race. Observing and dissecting the differences between their own fair features and the large lips and dark skin of their slaves, Americans came to the conclusion that they were the de facto superior race in all aspects of humanity, despite the lack of scientific empiricism. Instead of obtaining impartial evidence for their superiority—of which, they would actually find none—they focused their efforts on finding justification for their enslavement and systematic dehumanization of African Americans for centuries to come. Though this pseudoscience was nothing but a gross perversion of Darwin’s widely supported Theory of Evolution and Natural Selection, the concept of a harsher eugenics outlined by Vacher de Lapouge based on this very theory and the idea of white supremacy became the underpinnings of Nazi Germany’s eugenics agenda. This form of scientific racism, verified only by the bias of a racist, ethnocentric society led to the creation of global selective breeding programs that eliminated—and, in fact, continue to eliminate—millions of innocent people leaving only masses of unrealized potential for scientific and social progress.

Unfortunately, such bias is not unique to eras of the past. From the very dawn of its conception in the mid-to-late 1900s, stem cell research has been influenced by bias. Though the utilization of the cells as transformative tissues has been revolutionary, this was only possible with the extraction of the inner cell mass in a human embryo. Such procedures, when first introduced, shocked the public as a process strikingly similar to the very destruction of human life, regardless of the undeveloped status of said human. Researchers were swayed by some of the strongest proponents of the ban of such procedures. Rather than specific religious denominations or political parties, the conflict attracted masses of people from differing backgrounds to forge a formidable opposition to the progression of health science. Consequently, some research institutions succumbed to the period’s public and private moral bias and halted experimentation. That is not to say, of course, that this bias was in any way intended with malice or aimed to deprive severely ill people of life-saving stem cells. Bias—public bias in particular—is oftentimes muddled with the fear of the unorthodox and the unconventional. In this case, though the bias did prevent scientific progression, it is important to note that it was influenced by a people that was, perhaps, not quite ready for such progression.

Alternatively, bias can provide the push that some societies need in order to develop and revolutionize. Just as most words in the English language, the word bias is double-faceted by nature. Far from the unscrupulous reputation it usually holds in science, it can also be defined as a predilection or a fondness for something—an emotion that all scientists must have in order to undertake the challenges of their satisfying yet simultaneously grating careers. Thus, through the years, bias has had the dual role of barrier and catalyst to major scientific breakthroughs.

Take, for example, the conflict with stem cell research. Stem-cell pioneer James Thomson was a researcher in one of only two laboratories in 1998 to successfully extract stem cells and, at the same time, destroy the human embryo from which they were plucked. In a New York Times Article titled “Man Who Helped Start Stem Cell War May End It”, Thomson says that he knew of the social stigma that surrounded his research and that he himself was, at first, very skeptical of the moral implications and had even worked with ethicists before he unknowingly detonated a moral bomb with his ground-breaking scientific research. When public opinion proved to be a seemingly significant barrier biased against his progress, however, instead of backing down and raising the metaphorical white flag of surrender, Thomson’s determination was only fueled by this bias against him. Working with researchers from Kyoto University, Thomson helped developed a new technique of adding a few genes to ordinary skin cells to make them function like stem cells. The scientific ramifications of this ethically sound method are infinite. Aside from the obvious benefits in research, the medical world is now bombarded with revolutionary new methods and treatments as vital tissue generation without the need to wait for donors becomes a possibility. Though the road ahead may still be paved with challenges in production for Thomson, without the public and his own personal bias of morality pressuring him, his systematic search for and discovery of an ethical method would not have become a reality.

Though one might be tempted to label the above example as the exemption to the rule of bias’ role in science, it is important to note that some of the greatest innovations and fundamental truths of our world were conceived under researchers’ personal bias of belief in their ideas. From Galileo Galilei and Louis Pasteur, to Marie Curie and Jane Goodall, these scientists lived during eras during which they were ridiculed by a public inexorably biased against them for daring to have an alternative model of the world and, in the latter individuals’ cases, a gender unorthodox for a scientist. Yet, personal conviction, determination and, yes, bias led these three scientists to international acclaim. Indeed, bias possesses a dual dynamism that allows it to stand as an obstruction to and creator of scientific progress. Suspended between these two polarities is where revolution, innovation, and true science emerge.

Everything is Awesome

By marina tinone 2nd place winner, yale scientific magazine national essay competition 2014 william h. hall high school west hartford, connecticut.

My brother and I were blessed to have our own Lego collections. Our rooms were lined with shelves and shelves of our own creations, some of them built using the instructions from the Lego sets, most of them made by ourselves. We ditched the boring booklets in the box and just made what we needed.

For my brother, his bricks were used to build complex helicopters and submarines, usually creating machines significantly more complicated than the ones designed by Lego. When I asked him about his submarine, and why all the pieces he used weren’t the same color, he told me that the submarine was supposed to be invisible, so the colors didn’t need to match. Besides, the hinges, the pulleys, the contraptions he made by himself– those were the important parts.

In my world, my Lego creations weren’t invisible. My stuffed animals needed sleds to play in the snow, houses to sleep in, school buses to go to school in the morning and come back in the evening. My machines were not as complex as my brother’s, but they worked, and my colors matched. The stuffed animals needed their yellow school buses, and I thought a sled would look nice in blue.

My brother’s Legos always impressed our parents. He definitely had the eyes of an engineer, a scientist. Now, when Mom and Dad looked into my room and watched their daughter raise a blue sled loaded with stuffed rabbits into the air, well… the kids were different, that’s for sure.

Watching my brother receive praise for his creations from our chemist and engineer parents, I thought that science was restricted to those interests. Science was for the ones who made Legos for the sake of the machine, not for the ones whose stuffed rabbits wore scarves.

I wonder– did the world think the same way I did when Rosalind Picard introduced affective computing in 1997? Upon learning more about the limbic system and its role in shaping perception, Picard realized that it was not enough to simply create new microprocessors and develop energy-efficient chips if they didn’t interact with the user’s emotions and social cues. Technology needed a more human touch to develop. When she created this novel field and opened it to the world, did her peers find such emotion-based studies unworthy? Did they believe that such “science” was an aberration to the disciplines that touted rational, sentiment-free thinking?

As Picard explained to Adam Higginbotham of Wired magazine, “I realized we’re not going to build intelligent machines until we build, if not something we call emotion, then something that functions like our emotion systems.”

Today, there is an international conference and a journal dedicated to affective computing, and labs around the world continue to further the field by finding applications for their “intelligent machines” to shape how we interact with technology every day.

What about those who supported computer science in the 1970s, back when computer science looked like a pile of hole-punched papers? Computer scientists once had to suade others of the viability of a field that would later become one of the most relevant and lucrative areas of study.

What about Gregor Mendel’s investigation with pea plants in 1866? Mendel’s contemporaries criticizing his work surely did not know that he would be credited for fathering the ever-evolving field of genetics.

What about Edward Jenner’s smallpox vaccine in 1798? No one believed that the ungodly idea of infecting someone to treat someone would save millions of lives.

Did those biased against the potential, the validity of these new fields and scientific pursuits, really understand their purposes and merits? With their closed interpretations of science, did they really understand what science is and can be? Over time, scientists have attempted to define science. Astronomer Carl Sagan asserted that “Science is a way of thinking much more than it is a body of knowledge.” Physicist Stephen Hawking describes science as “not only a disciple of reason but, also, one of romance and passion.”

Although both eloquently stated their thoughts, I am convinced by the words of chemist Marie Curie –

“I am among those who think that science has great beauty. A scientist in his laboratory is not only a technician; he is also a child placed before natural phenomena which impress him like a fairy tale. We should not allow it to be believed that all scientific progress can be reduced to mechanism, machines, gearings, even though such machinery also has its own beauty.”

I remember comparing my blue sled to my brother’s invisible submarine, and I hold onto my creation a little tighter. Maybe there is something more to science than my brother’s sophisticated machines. When my younger self stood in her room, surrounded by her Lego bricks, she shouldn’t have diminished the progress she had made in her Lego laboratory, just because she didn’t use pulleys or interlocking gears.

I shouldn’t have been so close-minded against my own science, just because the world around me was biased against my ideas. From my studies, I hypothesized, I tested, I built upon my past results. My world needed science, but it didn’t need what had already been done, or was already deemed acceptable. It needed my own input. Call my ideas biased, call them faulted. But without the individuals interpreting and solving their world’s struggles using their own definitions, science would cease to develop.

Scientists continue to stand in their laboratories in child-like wonder, enraptured by the phenomena that enchant them, in all shapes and forms. Science is about discovering what you find beautiful in your world, and working, playing, in order to fulfill your personal curiosity and the needs of your imagination.

Let’s sit down. Let’s open up those boxes filled with possibilities. Throw away the instructions.

Let’s play.

The Good and Bad of Bias and Prejudice in Science

By jonathan chan 3rd place winner, yale scientific magazine national essay competition 2014 milton academy milton, massachusetts.

Scientists take pride in using the scientific method that dictates testing a hypothesis dispassionately with objective experiments, scrutinizing that the results are replicable, presenting all the data for independent peer review, and addressing any dissenting views vigorously. Over the years, scientists have been very successful in creating the public myth that they love second guessing their own hypotheses to safeguard themselves from unintentional bias and prejudice. This rigorous process has enabled science to become exalted as an arbiter of truth by most people. In reality, however, scientists behave very differently and bias in scientific research is in fact quite common; a steadily growing number of published papers have been found to be not replicable, calling into question the validity of many widely accepted hypotheses.

Scientists are humans, with personal beliefs and values. It is human nature to look for evidence to support one’s beliefs. A fundamental flaw of human nature is its love for being proven right and hate for being proven wrong. This flaw causes scientists to unconsciously find data to confirm their preferred hypotheses or preconceptions, and they overlook – even disregard – evidence that is contrary. This phenomenon is known to psychologists as “confirmation bias”. A study of the efficacy of Chinese acupuncture is an interesting example of how cultural beliefs of scientists affect their research. Clinical experiments on acupuncture performed in Asia overwhelmingly support its therapeutic effectiveness, while trials implemented in the West show inconclusive results.

“Confirmation bias” can influence every step of any scientific experiment set up to test a hypothesis, from how the experiment is designed, to how the results are measured, to how the data are interpreted. Scientific research today is highly competitive and involves significant financial resources; a culture of publish or perish is pervasive. There is constant pressure on scientists to generate groundbreaking discoveries in drugs, materials, and technologies. The experimental methods are highly complex, and as a result, “positive results” are extremely difficult to produce, measure, and assess. No wonder many researchers become overly excited over the first piece of positive data, giving it biased prominence over the mundane, negative results and subsequently “shoe- horning” the flawed data that eventuate a faulty conclusion.

In theory, peer review by independent professionals and publications should provide an effective defense against these subtle biases. In practice, however, this process is just as prone to the same kind of confirmation biases which favors positive results over null data and negative hypotheses. A recent study on the selection process of scientific publications concludes that papers are less likely to be published and to be cited if they report “negative” results. A prominent example of this institutional bias involves a high-profile study which linked child MMR vaccination with increased incidences of autism. This study caused widespread panic and resulted in a detrimental decade-long decrease in child immunization. Although numerous studies were conducted at the same time supporting a contrary conclusion, these “negative-result” papers failed to gain the level of attention of the “positive-result” paper the retraction of which took ten years.

History is replete with incidences where biases and prejudices have not only steered scientific research, but also fostered malicious prejudice of the research on an unsuspecting public. The prejudicial practice of eugenics in the early 1900’s caused thousands of innocent people to be labeled as inferior and unjustly persecuted for no scientific reason. Lysenkoism in the 1930’s in the Soviet Union advocated bias and useless “scientific” methods to increase crop yields for political purpose, resulting in the deaths of millions of starving peasants. On the other hand, bias has not always hindered scientific progress. Scientists in the past could not have known whether their brilliant ideas were right or wrong. Many of the problems they were trying to solve were not only difficult but also inductive due to a lack of evidence. These ideas necessarily originated as wild guesses encompassing the scientists’ individual biases and prevailing societal values.

Astrophysicist Mario Livio in his book “Brilliant Blunders” provides a litany of bias- induced scientific blunders which in time transformed into breakthrough scientific discoveries. Linus Pauling was a protein specialist and was likely to be biased in favor of proteins, which fueled his erroneous prediction of the DNA structure. Charles Darwin came out with the flawed theory of inheritance because he was likely influenced by the biases of the plant and animal breeders prevalent during his career. Lord Kelvin’s inordinate devotion to tidy mathematics and his bias against messiness resulted in his inaccurate calculation of earth’s age.

However, as these unconscious personal biases and societal prejudices are “uncovered” and properly understood, this development can actually facilitate the pursuit of true scientific knowledge. Bias and prejudice in science have caused unfortunate setbacks but at the same time have generated clarity for decisive shifts in thinking and accelerated advances. The scientific process is complex, messy, and at times even boring, full of starts and stops. Yet, this system of inquiry encompasses a self-correcting tendency which has withstood the test of time and remains a stunning success in understanding nature and improving lives. As influential German philosopher Hans-Gerog Gadamer writes: a researcher “cannot separate in advance the productive prejudices that enable understanding from the prejudices that hinder it”. Preconceptions can spur as well as blind in scientific research.

Unfortunately, scientific research today may have become overly zealous in guarding itself against biases and prejudices, succumbing to politically correct social forces and avoiding tackling sensitive problems and issues which may offend the prevailing public morality. Scientific research is increasingly constrained by these forces dictating what topics can be studied, how we study them, why we need to study them, and who gets to do the studying. A bigger crisis looms should science lose its relevance and importance due to excessive fear of unavoidable bias and prejudice in scientific research. As the Wright brothers said: “If a man is in too big a hurry to give up an error he is liable to give up some truth with it.”[/vc_column_text][vc_button2 title=”Go back” style=”square” color=”sky” size=”sm” link=”url:http%3A%2F%2Fwww.yalescientific.org%2Fsynapse%2Fcontest-winners%2F|title:Contest%20Winners|”][/vc_column][/vc_row]

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

THE NATION'S OLDEST COLLEGE SCIENCE PUBLICATION

How to Write a Scientific Essay

How to write a scientific essay

When writing any essay it’s important to always keep the end goal in mind. You want to produce a document that is detailed, factual, about the subject matter and most importantly to the point.

Writing scientific essays will always be slightly different to when you write an essay for say English Literature . You need to be more analytical and precise when answering your questions. To help achieve this, you need to keep three golden rules in mind.

  • Analysing the question, so that you know exactly what you have to do

Planning your answer

  • Writing the essay

Now, let’s look at these steps in more detail to help you fully understand how to apply the three golden rules.

Analysing the question

  • Start by looking at the instruction. Essays need to be written out in continuous prose. You shouldn’t be using bullet points or writing in note form.
  • If it helps to make a particular point, however, you can use a diagram providing it is relevant and adequately explained.
  • Look at the topic you are required to write about. The wording of the essay title tells you what you should confine your answer to – there is no place for interesting facts about other areas.

The next step is to plan your answer. What we are going to try to do is show you how to produce an effective plan in a very short time. You need a framework to show your knowledge otherwise it is too easy to concentrate on only a few aspects.

For example, when writing an essay on biology we can divide the topic up in a number of different ways. So, if you have to answer a question like ‘Outline the main properties of life and system reproduction’

The steps for planning are simple. Firstly, define the main terms within the question that need to be addressed. Then list the properties asked for and lastly, roughly assess how many words of your word count you are going to allocate to each term.

Writing the Essay

The final step (you’re almost there), now you have your plan in place for the essay, it’s time to get it all down in black and white. Follow your plan for answering the question, making sure you stick to the word count, check your spelling and grammar and give credit where credit’s (always reference your sources).

How Tutors Breakdown Essays

An exceptional essay

  • reflects the detail that could be expected from a comprehensive knowledge and understanding of relevant parts of the specification
  • is free from fundamental errors
  • maintains appropriate depth and accuracy throughout
  • includes two or more paragraphs of material that indicates greater depth or breadth of study

A good essay

An average essay

  • contains a significant amount of material that reflects the detail that could be expected from a knowledge and understanding of relevant parts of the specification.

In practice this will amount to about half the essay.

  • is likely to reflect limited knowledge of some areas and to be patchy in quality
  • demonstrates a good understanding of basic principles with some errors and evidence of misunderstanding

A poor essay

  • contains much material which is below the level expected of a candidate who has completed the course
  • Contains fundamental errors reflecting a poor grasp of basic principles and concepts

essay about a scientific

Privacy Overview

Write Like a Scientist

A Guide to Scientific Communication

What is scientific writing ?

Scientific writing is a technical form of writing that is designed to communicate scientific information to other scientists. Depending on the specific scientific genre—a journal article, a scientific poster, or a research proposal, for example—some aspects of the writing may change, such as its  purpose , audience , or organization . Many aspects of scientific writing, however, vary little across these writing genres. Important hallmarks of all scientific writing are summarized below. Genre-specific information is located  here  and under the “By Genre” tab at the top of the page.

What are some important hallmarks of professional scientific writing?

1. Its primary audience is other scientists. Because of its intended audience, student-oriented or general-audience details, definitions, and explanations — which are often necessary in lab manuals or reports — are not terribly useful. Explaining general-knowledge concepts or how routine procedures were performed actually tends to obstruct clarity, make the writing wordy, and detract from its professional tone.

2. It is concise and precise . A goal of scientific writing is to communicate scientific information clearly and concisely. Flowery, ambiguous, wordy, and redundant language run counter to the purpose of the writing.

3. It must be set within the context of other published work. Because science builds on and corrects itself over time, scientific writing must be situated in and  reference the findings of previous work . This context serves variously as motivation for new work being proposed or the paper being written, as points of departure or congruence for new findings and interpretations, and as evidence of the authors’ knowledge and expertise in the field.

All of the information under “The Essentials” tab is intended to help you to build your knowledge and skills as a scientific writer regardless of the scientific discipline you are studying or the specific assignment you might be working on. In addition to discussions of audience and purpose , professional conventions like conciseness and specificity, and how to find and use literature references appropriately, we also provide guidelines for how to organize your writing and how to avoid some common mechanical errors .

If you’re new to this site or to professional scientific writing, we recommend navigating the sub-sections under “The Essentials” tab in the order they’re provided. Once you’ve covered these essentials, you might find information on  genre-  or discipline-specific writing useful.

Scientific Method: Role and Importance Essay

The scientific method is a problem-solving strategy that is at the heart of biology and other sciences. There are five steps included in the scientific method that is making an observation, asking a question, forming a hypothesis or an explanation that could be tested, and predicting the test. After that, in the feedback step that is iterating, the results are used to make new predictions. The scientific method is almost always an iterative process. In other words, rather than a straight line, it is a cycle. The outcome of one round of questioning generates feedback that helps to enhance the next round of questioning.

Science is an activity that involves the logical explanation, prediction, and control of empirical phenomena. The concepts of reasoning applicable to the pursuit of this endeavor are referred to as scientific reasoning (Cowles, 2020). They include topics such as experimental design, hypothesis testing, and data interpretation. All sciences, including social sciences, follow the scientific method (Cowles, 2020). Different questions and tests are asked and performed by scientists in various domains. They do, however, have a common approach to finding logical and evidence-based answers.

Scientific reasoning is fundamental for all types of scientific study, not simply institutional research. Scientists do employ specific ideas that non-scientists do not have to use in everyday life. However, many reasoning principles are useful in everyday life. Even if one is not a scientist, they must use excellent reasoning to understand, anticipate, and regulate the events that occur in the environment. When one wants to start their careers, preserve their finances, or enhance their health, they need to acquire evidence to determine the most effective method for achieving our goals. Good scientific thinking skills come in handy in all of these situations.

Experiments, surveys, case studies, descriptive studies, and non-descriptive studies are all forms of research used in the scientific method. In an experiment, a researcher manipulates certain factors in a controlled environment and assesses their impact on other variables (Black, 2018). Descriptive research focuses on the nature of the relationship between the variables being studied rather than on cause and effect. A case study is a detailed examination of a single instance in which something unexpected has occurred. This is normally done with a single individual in extreme or exceptional instances. Large groups of individuals are polled to answer questions about certain topics in surveys. Correlational approaches are used in non-descriptive investigations to anticipate the link between two or more variables.

The Lau and Chan technique describes how to assess the validity of a theory or hypothesis using the scientific method, also known as the hypothetical-deductive method (Lau & Chan, 2017). For testing theories or hypotheses, the hypothetical-deductive technique (HD method) is highly useful. It is sometimes referred to as “scientific procedure.” This is not quite right because science can’t possibly employ only one approach. However, the HD technique is critical since it is one of the most fundamental approaches used in many scientific disciplines, including economics, physics, and biochemistry. Its implementation can be broken down into four stages. The stages include using the hypothetical-deductive method, identifying the testable hypothesis, generating the predictions according to the hypothesis, and using experiments in order to check the predictions (Cowles, 2020). If the predictions that are tested turn out to be correct, the hypothesis will be confirmed. Suppose the results are incorrect; the hypothesis would be disconfirmed.

The HD method instructs us on how to test a hypothesis, and each scientific theory must be testable.

One cannot discover evidence to illustrate whether a theory is likely or not if it cannot be tested. It cannot be considered scientific information in that circumstance. Consider the possibility that there are ghosts that people cannot see, cannot communicate with, and cannot be detected directly or indirectly. This hypothesis is defined in such a way that testing is not possible. It could still be real, and there could be such ghosts, but people would never know; thus, this cannot be considered a scientific hypothesis. In general, validating a theory’s predictions raises the likelihood that it is right. However, this does not establish definitively that the theory is right in and of itself. When given additional assumptions, a hypothesis frequently creates a prediction. When a forecast fails in this way, the theory may still be valid.

When a theory makes a faulty prediction, it might be difficult to determine whether the theory should be rejected or whether the auxiliary assumptions are flawed. Astronomers in the 19th century, for example, discovered that Newtonian physics could not adequately explain the orbit of the planet Mercury. This is due to the fact that Newtonian physics is incorrect, and you require relativity to get a more accurate orbit prediction. When astronomers discovered Uranus in 1781, they discovered that its orbit did not match Newtonian physics predictions. However, astronomers concluded that it could be explained if Uranus was being affected by another planet, and Neptune was discovered as a result.

I had several instances where I have made assumptions on an important issue regardless of evidence. Once I have prepared the work on the topic of power distribution in the workplace and its relation to gender, I have assumed that possibly because of the general feminine traits, women are less likely to create a strong image of power in comparison with men. In fact, such a hypothesis needs to be tested, and it is testable. For example, I could first define what is meant by feminine traits by collecting data from different biological and psychological sources. After that, I could observe the information regarding what factors or behavior patterns contribute to establishing power in the workplace. If I found the correlation between the feminine character traits, communication style, and behavioral patterns with the distribution of power in the workplace, then I could confirm my hypothesis.

Thus, applying the scientific method can help to improve critical reasoning by using tools from scientific reasoning. By supporting the provided hypothesis with evidence from scientific research and statistical data, one can make their claim more valuable and objective. The scientific method is essential for the creation of scientific theories that explain information and ideas in a scientifically rational manner. In a typical scientific method application, a researcher makes a hypothesis, tests it using various methods, and then alters it based on the results of the tests and experiments. The new hypothesis is then retested, further changed, and retested until it matches observable events and testing results. Hypotheses serve as tools for scientists to collect data in this way. Scientists can build broad general explanations, or scientific theories, based on that evidence and the numerous scientific experiments conducted to investigate possibilities. In conclusion, a scientific method is an important approach to examining the hypothesis. By using the tools of the scientific method, the inferences become rational and objective.

Black, M. (2018). Critical thinking: An introduction to logic and scientific method . Pickle Partners Publishing.

Cowles, H. M. (2020). The Scientific Method . Harvard University Press.

Lau, J., & Chan, J. (2017). Scientific methodology: Tutorials 1-9 .

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2023, March 14). Scientific Method: Role and Importance. https://ivypanda.com/essays/scientific-method-role-and-importance/

"Scientific Method: Role and Importance." IvyPanda , 14 Mar. 2023, ivypanda.com/essays/scientific-method-role-and-importance/.

IvyPanda . (2023) 'Scientific Method: Role and Importance'. 14 March.

IvyPanda . 2023. "Scientific Method: Role and Importance." March 14, 2023. https://ivypanda.com/essays/scientific-method-role-and-importance/.

1. IvyPanda . "Scientific Method: Role and Importance." March 14, 2023. https://ivypanda.com/essays/scientific-method-role-and-importance/.

Bibliography

IvyPanda . "Scientific Method: Role and Importance." March 14, 2023. https://ivypanda.com/essays/scientific-method-role-and-importance/.

  • The Earth's orbit and Other Astronomical Phenomena Affect the Earth’s
  • The Cosmic Dance of Siva
  • A Trip to Mars: Approximate Time, Attaining Synchrony & Parking Orbit
  • Pragmatic Development Description and Explanation
  • Outreach Chicago's Study Variables and Research Design
  • Types of Studies for the Outreach Chicago Firm
  • Nobel Prize for Natural Experiments
  • System Dynamics and Soft Systems and Action Research

Home / Essay Samples / Science

Scientific Essay Examples

Science is the systematic investigation of the surrounding world through observation and experiments and the process of formulating judgments and hypotheses based on obtained evidence. Given that science can be directed at virtually any question that humans find relevant, so can be an essay on science – starting from questions in natural sciences and ending with social sciences.

Science is always relevant because it is the practice through which virtually any new knowledge is gained and any innovation is achieved. Another reason for its relevance is because nowadays, the scientific consensus is often ignored by many people and even national authorities. Below you can find several scientific essay examples to review – note the topics, structure, information delivery style, language.

Gmo: Balancing Benefits and Drawbacks

Genetically Modified Organisms (GMOs) have been a topic of intense debate and scrutiny for decades. This argumentative essay aims to shed light on the benefits of GMOs, arguing that their positive impact on agriculture, food security, and sustainability outweigh the drawbacks. While concerns about safety...

Spanish Slang and Its Role in Contemporary Communication

Language is a living, evolving entity, and slang is one of its most dynamic facets. In the Spanish-speaking world, slang, or "jerga" as it's known, adds vibrancy, humor, and cultural context to communication. Spanish slang is a rich tapestry of expressions that reflect the diversity...

Lost Cities and Lost Treasure

The allure of lost cities and lost treasure has captured human imagination for centuries. These mysteries from the past, hidden beneath layers of time and nature, evoke a sense of adventure, curiosity, and the possibility of uncovering untold stories and riches. From the legendary city...

The Rocking-horse Winner: Unveiling Hidden Desires

D.H. Lawrence's short story "The Rocking-Horse Winner" delves into the complexities of human desires and the destructive power of materialism. This essay analyzes the themes of luck, greed, and the pursuit of wealth, while also examining the characters' emotional turmoil and the haunting consequences of...

The Practical Role of Math in Everyday Life

Understanding how math is used in everyday life unveils the hidden threads that intricately connect mathematics to our daily experiences. This essay delves into the practical applications of math in various facets of our lives, shedding light on how this fundamental discipline influences our decisions,...

Conserving Energy: a Path to Sustainability

Energy conservation is not merely a concept—it's a responsibility that each individual and society bears to ensure the sustainable future of our planet. With growing concerns about climate change and resource depletion, conserving energy has become a crucial step toward minimizing our ecological footprint. In...

Energy Crisis: Illuminating Perspectives

"Energy is the golden thread that connects economic growth, social equity, and environmental sustainability." This quote by Ban Ki-moon underscores the pivotal role of energy in shaping the modern world. However, as global demands increase and resources dwindle, an energy crisis looms on the horizon....

Exploring "My Side of the Mountain": a Journey into Wilderness and Self-discovery

"My Side of the Mountain," written by Jean Craighead George, is a captivating novel that takes readers on a unique journey of self-discovery through the eyes of a young protagonist. In this essay, we will delve into the world of "My Side of the Mountain,"...

Earthquakes: Causes, Effects, and Implications

Earthquakes, natural phenomena that shake the very ground we stand on, have captured human fascination and fear for centuries. These sudden and often devastating events are the result of intricate geological processes that have both immediate and far-reaching effects. In this essay, we will delve...

A World Without Mathematics: Imagining the Unthinkable

Mathematics is the language of logic, order, and structure that underpins our world. It is a fundamental tool for understanding the universe, solving problems, and advancing technology. Imagine, for a moment, a world without mathematics — a world devoid of equations, calculations, and mathematical concepts....

Trying to find an excellent essay sample but no results?

Don’t waste your time and get a professional writer to help!

  • Agriculture
  • Anthropology
  • Political Science
  • Scientific Method
  • Genetic Engineering
  • Solar Eclipse
  • Space Exploration
  • Photosynthesis
  • Microbiology
  • Bilingualism
  • Albert Einstein
  • Renewable Energy
  • Isaac Newton
  • Thomas Edison
  • Engineering
  • Intelligent Machines
  • Biotechnology
  • Hermit Crab
  • Wildlife Conservation
  • Earth Science
  • Archaeology
  • Criminology
  • Criminology Theories
  • Ethnography
  • Kinesiology
  • Research Methods
  • Science and Culture
  • Science Vs. Religion
  • Social Studies

samplius.com uses cookies to offer you the best service possible.By continuing we’ll assume you board with our cookie policy .--> -->

Science Essay Examples for Students

Writing a science essay can be a daunting task for students. However, with the right guidance and examples, it can also be a rewarding and enlightening experience.

Here, we'll provide you with examples so you can elevate your own writing.

Science Essay Example SPM

Scientific Essay Example Pdf (Insert

Science Paper Example

Science Project Essay Example

Science Essay Examples for Different Subjects

Science is a vast field that encompasses many different subjects, from biology to physics to chemistry. As a student, you may find yourself tasked with writing a science essay on a subject that you're not particularly familiar with. 

We have provided you with science essay examples for different subjects to help you get started.

Social Science Essay Example

Political Science Essay Example

Environmental Science Essay Example

Health Science Essay Example

Computer Science Essay Example

University Science Essay Examples

Science essays are important part of university-level education. However, different universities may have different requirements and expectations when it comes to writing these essays. 

That's why we've compiled some science essay examples for different universities. You can see what works and what doesn't, and tailor your own writing accordingly.

Scientific Essay Example University

Mcmaster Health Science Essay Example

Cornell Arts And Science Essay Example

Order Essay

Tough Essay Due? Hire Tough Writers!

Structure of a Science Essay

Science essays are a crucial part of many subjects, and learning to structure them effectively is essential for achieving academic success. 

Let’s explore scientific essay structure.

Introduction

The introduction of a science essay should introduce the topic and provide some context for the reader. 

You should explain the purpose of the essay and provide a thesis statement that outlines the main argument you will make in the essay. A good introduction should also capture the reader's interest and motivate them to read on.

Check out these how to start a science essay examples for better understanding:

Body Paragraphs

The body paragraphs of a science essay should provide evidence to support the thesis statement. You should use scientific evidence, research, and data to support your argument. 

Each paragraph should focus on one key point, and the points should be organized logically to create a coherent argument. It is essential to provide citations for all sources you use in your essay.

Here is an example for you:

The conclusion of a science essay should summarize the main points of the essay and restate the thesis statement in a compelling manner. 

You should also provide some final thoughts or recommendations based on the evidence presented in the essay. 

The conclusion should be concise and leave a lasting impression on the reader.

Natural Science Essay Topics

There are countless interesting, thought-provoking and problem solving essay topics in science.

Explore some compelling natural science essay topics to inspire your writing.

Science Essay Topics for 5th Graders

  • The importance of recycling for our environment
  • The different types of clouds and how they form
  • How animals hibernate during the winter months
  • The different types of rocks and how they are formed
  • The role of bees in pollination and food production
  • How light travels and how we see objects
  • The properties of magnets and how they work
  • The different stages of stem cell research 
  • The human digestive system and how it works
  • The effects of pollution on our environment and health

Science Essay Topics for 6th Graders

  • The impact of climate change on the planet
  • The different types of energy and how they are produced
  • The importance of water conservation and management
  • The role of artificial intelligence in human life
  • The structure and function of the human respiratory system
  • The properties and uses of acids and bases
  • The effect of light on plant growth and development
  • The differences between renewable and non-renewable energy sources
  • The process of photosynthesis and its importance for life on Earth
  • The impact of technology on the environment and society

Science Essay Topics for 7th Graders

  • The structure and function of the human circulatory system
  • The different types of fossils and how they are formed
  • The impact of natural disasters on the environment and human life
  • The pros and cons of bacteria in our bodies and in the environment
  • The physics of sound and how it travels
  • The effects of air pollution in United States
  • The properties and uses of different types of waves (sound, light, etc.)
  • The process of cell division and its role in growth and repair
  • The structure and function of the human nervous system
  • The different types of ecosystems and their unique characteristics

Paper Due? Why Suffer? That's our Job!

Tips for Writing a Science Essay

Writing a science essay can be challenging, especially if you don't have much experience in writing academic papers. 

However, with the right approach and strategies, you can produce a high-quality science essays. 

Here are some tips to help you write a successful science essay:

Understand the assignment requirements: Before you start writing your essay, make sure you understand the assignment requirements. Read the prompt carefully and make note of any specific guidelines or formatting requirements.

Choose a topic that interests you: Writing about a topic that you find interesting and engaging can make the process enjoyable and rewarding. Consider topics that you have studied in class or that you have a personal interest in.

Conduct thorough research: To write a successful science essay, you need to have a deep understanding of the topic you are writing about. Conduct thorough research using reliable sources such as academic journals, textbooks, and reputable websites.

Develop a clear and concise thesis statement: Your thesis statement should clearly state your argument or position on the topic you are writing about. It should be concise and specific, and should be supported by evidence throughout your essay.

Use evidence to support your claims: When writing a science essay, it's important to use evidence to support your claims and arguments. This can include scientific data, research findings, and expert opinions.

Edit and proofread your essay: Before submitting your essay, make sure to edit and proofread it carefully. Check for spelling and grammatical errors. Ensure that your essay is formatted correctly according to the assignment requirements.

In conclusion, this blog has provided a comprehensive guide to writing a successful science essay. 

By following the tips, students can produce high-quality essays that showcase their understanding of science.

If you're struggling to write a science essay or need additional assistance, CollegeEssay.org is one of the best online essay services to help you out,

Our expert writers have extensive experience in writing science essays for students of all levels. 

So why wait? Contact our science essay writing service today!

Frequently Asked Questions

What are some common mistakes to avoid when writing a science essay.

Some common mistakes to avoid include:

  • Plagiarizing content
  • Using incorrect or unreliable sources
  • Failing to clearly state your thesis
  • Using overly complex language 

How can I make my science essay stand out?

To make your science essay stand out, consider choosing a unique or controversial topic. Using relevant and up-to-date sources, and present your information in a clear and concise manner. You can also consider using visuals such as graphs or charts to enhance your essay.

What should I do if I'm struggling to come up with a topic for my science essay?

If you're struggling to come up with a topic for your science essay, consider discussing potential topics with your instructor or classmates. You can also conduct research online or in academic journals to find inspiration.

How important is research when writing a science essay?

Research is an essential component of writing a science essay. Your essay should be grounded in accurate and reliable scientific information. That is why it's important to conduct thorough research using reputable sources.

Can I use personal anecdotes or experiences in my science essay?

While personal anecdotes or experiences can be engaging, they may not always be relevant to a science essay. It's important to focus on presenting factual information and scientific evidence to support your argument or position.

Caleb S. (Law, Literature)

Caleb S. has extensive experience in writing and holds a Masters from Oxford University. He takes great satisfaction in helping students exceed their academic goals. Caleb always puts the needs of his clients first and is dedicated to providing quality service.

Paper Due? Why Suffer? That’s our Job!

Get Help

Legal & Policies

  • Privacy Policy
  • Cookies Policy
  • Terms of Use
  • Refunds & Cancellations
  • Our Writers
  • Success Stories
  • Our Guarantees
  • Affiliate Program
  • Referral Program
  • AI Essay Writer

Disclaimer: All client orders are completed by our team of highly qualified human writers. The essays and papers provided by us are not to be used for submission but rather as learning models only.

essay about a scientific

essay about a scientific

30,000+ students realised their study abroad dream with us. Take the first step today

Here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

essay about a scientific

Verification Code

An OTP has been sent to your registered mobile no. Please verify

essay about a scientific

Thanks for your comment !

Our team will review it before it's shown to our readers.

essay about a scientific

Essay on Scientific Discoveries

' src=

  • Updated on  
  • Feb 7, 2024

Essay on Scientific discoveries

Writing and speaking skills are the most important skills in the world. It shows how well a student will convey his or her ideas, experiences and thoughts. Essays are one of the most popular forms of writing to ascertain an applicant’s general knowledge, experiences, writing style and language skills. It is used in many entrance exams like SAT, IELTS, TOEFL and in college applications as well. From a very early age, school curriculums have been encouraging students to write essays and give speeches. Sometimes the topics provided to students can be complicated. So, today we have come up to help the students with an essay on Scientific Discoveries.

Check out our 200+ Essay Topics for School Students in English

Five Qualities of A Good Essay

Before we provide you with an essay on scientific discoveries. Let’s learn about essay writing. Writing an essay is a difficult thing. The writing should be rich in content plus should not bore its readers. Here are the five qualities a perfect essay should have:-

  • Focus: All of your writing should come under one single topic. No matter how vast your essay is, it should always revolve around the topic of the essay. Avoid unnecessary details.
  • Development: Every paragraph of your essay should centre the topic of your essay. Try to use examples, details and descriptions.
  • Free composition: Always follow a basic structure. Before finalising your essay, jot down the points you would like to mention and then make a series. Do not surprise the reader with complicated words, try to keep it as simple as possible. 
  • Correctness: Make sure your essay is free from any grammatical errors, spelling mistakes, mismatched sentences, etc. Always use standard English and complete sentences.
  • Introduction and Conclusion: The introduction and the conclusion of the writing are the most important parts of the essay. The first impression is always the last, and so is the introduction of your writing. After reading the first two or three lines, if the reader gets bored, he may not read your whole essay. So make sure your essay contains a crispy beginning. Alternatively, make the conclusion so strong and effective that the reader never forgets your essay. Don’t feel afraid to use quotes, catchy lines, slogans and all. They are the cherry on the cake for your essay.

Also Read: Importance of Technology in Education

Also Read: Essay on Athletics in 100, 200 and 300 Words

Sample Essay on Scientific Discoveries

Here is an example of an essay on scientific discoveries to help them out in their school assignments.

Everything around us is a great discovery. Be it a necessity, comfort, or luxury, they all came from different scientific discoveries that took place over some time. Starting from a small pin to a big ship, everything is just a mere invention to make the lives of humans easier. Scientistic discoveries take place in every arena of thought so before we talk about these inventions. Let’s examine what is science. What is science? Science is a system for acquiring knowledge. We use observations, and experimentation to come to a conclusion and explain any natural phenomenon. In simple language, science is the systematic field of study or knowledge gained from experimentations, observations and some accepted facts. And so scientific discoveries have done miracles in human lives.  Scientific discoveries and inventions have made our lives easier and more comfortable than we could have ever imagined. Scientific equipment accomplishes lengthy tasks in just minutes. Be it in the health sector, education, transportation, and more. All the inventions are just the gifts of science. Nowadays we are in a situation where without science, we cannot imagine our survival. In the absence of Science, no country, and no single person would have made progress. Scientific discoveries and inventions are machines that accomplish any task of humans either fully or partially. According to the business dictionary, the word ‘invention’ is “a new scientific or technical idea and the means of its embodiment or accomplishment. To be patentable, an invention must be novel, have utility, and be non-obvious. To be called an invention, an idea only needs to be proven as workable. But to be called an innovation, it must also be replicable at an economical cost and must satisfy a specific need. That’s why only a few inventions lead to innovations because not all of them are economically feasible.” Wikipedia further says, “An invention is a unique or novel device, method, composition or process. It may be an improvement upon a machine or product or a new process for creating an object or a result. An invention that achieves a unique function or result may be a radical breakthrough. Such works are novel and not obvious to others skilled in the same field.” These definitions made us clear about how important scientific discovery is for us. Due to science, we can get all kinds of things we desire for. Electricity is a miracle that gives us light even in the dark. It further helps us to run industries conserve the environment and control pollution .  A cricket match is going on in America and we can watch it. Why? Inventions! Nowadays medical science is doing its best all over the world. Let us not forget computers, which is the greatest invention of mankind.  However, it is rightly said that every coin has two sides. Scientific discoveries and inventions have given us a lot and at the same time created a lot of disadvantages too. Nowadays people have become so dependent on technology that even walking has become difficult. Inventions made people so lazy, especially the young generation. All they could think about now is sitting at their home, with their computers and tablets on.

Gone are the days when people used to go out, play and have actual fun in life. Also, scientific inventions have made people jobless. Employers are substituting their employees with heavy machines. And this is the sad reality everywhere. Along with a luxurious life, technology has made our lives more complicated. People nowadays catch the disease early due to no exercise and sitting in front of their computer the whole day.  The biggest and most disastrous inventions are weapons, guns and bombs. What’s worse than taking the life of people? It has ruined unity, peace and harmony all over the world.  Scientific discoveries and inventions have contributed so much that my essay would never be enough to explain it. Ultimately, I would like to say that do not take up the monstrous side. Try the blessing of discoveries and make your life better in every aspect.

Also Read: Essay on Information Technology in 400 Words

Check out our Popular Essay Topics for Students

So this was all regarding an essay on scientific discoveries. For more information on such interesting topics, visit our essay writing page and follow Leverage Edu.

' src=

Team Leverage Edu

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

Good work thanks

Thank you, Deepesh!

Good work🙏 sir thanks for sharing

Thank u it was very helpful

Thank you this helped me a lot

browse success stories

Leaving already?

8 Universities with higher ROI than IITs and IIMs

Grab this one-time opportunity to download this ebook

Connect With Us

30,000+ students realised their study abroad dream with us. take the first step today..

essay about a scientific

Resend OTP in

essay about a scientific

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

September 2024

January 2025

What is your budget to study abroad?

essay about a scientific

How would you describe this article ?

Please rate this article

We would like to hear more.

essay about a scientific

Building embryos

For 3,000 years, humans have struggled to understand the embryo. Now there is a revolution underway

John Wallingford

essay about a scientific

Last hours of an organ donor

In the liminal time when the brain is dead but organs are kept alive, there is an urgent tenderness to medical care

Ronald W Dworkin

essay about a scientific

The environment

We need to find a way for human societies to prosper while the planet heals. So far we can’t even think clearly about it

Ville Lähde

An image shows the earth horizon at night seen from space. The lights of a city glow beneath the vast starry night of space

Alien life is no joke

Not long ago the search for extraterrestrials was considered laughable nonsense. Today, it’s serious and scientific

essay about a scientific

History of ideas

Reimagining balance

In the Middle Ages, a new sense of balance fundamentally altered our understanding of nature and society

essay about a scientific

Why do the building blocks of life possess a mysterious symmetry?

An early morning view across an old bridge towards the spires of a historic medieval city partially obscured by fog

Return of the descendants

I migrated to my ancestral homeland in a search for identity. It proved to be a humbling experience in (un)belonging

Jessica Buchleitner

essay about a scientific

Tiny, entangled universes that form or fizzle out – a theory of the quantum multiverse

essay about a scientific

Neuroscience

How to make a map of smell

We can split light by a prism, sounds by tones, but surely the world of odour is too complex and personal? Strangely, no

Jason Castro

essay about a scientific

The history of astronomy is a history of conjuring intelligent life where it isn’t

essay about a scientific

Metaphysics

Simple entities in universal harmony – Leibniz’s evocative perspective on reality

essay about a scientific

Biography and memoir

Passed over as the first Black astronaut, Ed Dwight carved out an impressive second act

essay about a scientific

Engineering

A close-up look at electronic paper reveals its exquisite patterns – and limitations

essay about a scientific

The cell is not a factory

Scientific narratives project social hierarchies onto nature. That’s why we need better metaphors to describe cellular life

Charudatta Navare

Bees push coloured tabs to access a sugary reward

Cognition and intelligence

What’s this buzz about bees having culture? Inside a groundbreaking experiment

essay about a scientific

Earth science and climate

The only man permitted in Bhutan’s sacred mountains chronicles humanity’s impact

essay about a scientific

The Indian astronomer whose innovative work on black holes was mocked at Cambridge

essay about a scientific

Anthropology

Societies of perpetual movement

Why do hunter-gatherers refuse to be sedentary? New answers are emerging from the depths of the Congolese rainforest

Cecilia Padilla-Iglesias

essay about a scientific

Rethinking the homunculus

When we discovered that the brain contained a map of the body it revolutionised neuroscience. But it’s time for an update

Moheb Costandi

essay about a scientific

Seven years later, what can we make of our first confirmed interstellar visitor?

essay about a scientific

Is it possible to design a shape to roll along any fixed path?

essay about a scientific

Science must become attuned to the subtle conversations that pervade all life, from the primordial to the present

David Waltner-Toews

essay about a scientific

Biotechnology

The two women behind a world-changing scientific discovery

essay about a scientific

History of technology

Indexing the information age

Over a weekend in 1995, a small group gathered in Ohio to unleash the power of the internet by making it navigable

Monica Westin

Essay on Science for Students and Children

500+ words essay on science.

Essay on science:  As we look back in our ancient times we see so much development in the world. The world is full of gadgets and machinery . Machinery does everything in our surroundings. How did it get possible? How did we become so modern? It was all possible with the help of science. Science has played a major role in the development of our society. Furthermore, Science has made our lives easier and carefree.

Essay on science

Science in our Daily Lives

As I have mentioned earlier Science has got many changes in our lives. First of all, transportation is easier now. With the help of Science it now easier to travel long distances . Moreover, the time of traveling is also reduced. Various high-speed vehicles are available these days. These vehicles have totally changed. The phase of our society. Science upgraded steam engines to electric engines. In earlier times people were traveling with cycles. But now everybody travels on motorcycles and cars. This saves time and effort. And this is all possible with the help of Science.

Secondly, Science made us reach to the moon. But we never stopped there. It also gave us a glance at Mars. This is one of the greatest achievements. This was only possible with Science. These days Scientists make many satellites . Because of which we are using high-speed Internet. These satellites revolve around the earth every day and night. Even without making us aware of it. Science is the backbone of our society. Science gave us so much in our present time. Due to this, the teacher in our schools teaches Science from an early age.

Get the huge list of more than 500 Essay Topics and Ideas

Science as a Subject

In class 1 only a student has Science as a subject. This only tells us about the importance of Science. Science taught us about Our Solar System. The Solar System consists of 9 planets and the Sun. Most Noteworthy was that it also tells us about the origin of our planet. Above all, we cannot deny that Science helps us in shaping our future. But not only it tells us about our future, but it also tells us about our past.

When the student reaches class 6, Science gets divided into three more subcategories. These subcategories were Physics, Chemistry, and Biology. First of all, Physics taught us about the machines. Physics is an interesting subject. It is a logical subject.

Furthermore, the second subject was Chemistry . Chemistry is a subject that deals with an element found inside the earth. Even more, it helps in making various products. Products like medicine and cosmetics etc. result in human benefits.

Last but not least, the subject of Biology . Biology is a subject that teaches us about our Human body. It tells us about its various parts. Furthermore, it even teaches the students about cells. Cells are present in human blood. Science is so advanced that it did let us know even that.

Leading Scientists in the field of Science

Finally, many scientists like Thomas Edison , Sir Isaac Newton were born in this world. They have done great Inventions. Thomas Edison invented the light bulb. If he did not invent that we would stay in dark. Because of this Thomas Edison’s name marks in history.

Another famous Scientist was Sir Isaac Newton . Sir Isaac Newton told us about Gravity. With the help of this, we were able to discover many other theories.

In India Scientists A..P.J Abdul was there. He contributed much towards our space research and defense forces. He made many advanced missiles. These Scientists did great work and we will always remember them.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

  • School Guide
  • English Grammar Free Course
  • English Grammar Tutorial
  • Parts of Speech
  • Figure of Speech
  • Tenses Chart
  • Essay Writing
  • Email Writing
  • NCERT English Solutions
  • English Difference Between
  • SSC CGL English Syllabus
  • SBI PO English Syllabus
  • SBI Clerk English Syllabus
  • IBPS PO English Syllabus
  • IBPS CLERK English Syllabus
  • Essay on Science in English: Check 200, 300 & 500 Words Essay
  • Essay on My House in English: Check 300, 500 & 800 Words Essay
  • Essay on My Father in English: 300, 500 & 800 Words Essay
  • My Aim in Life Essay For Students: 100, 200 & 500 Words Essay
  • 500+Words Essay on My Hobby in English
  • 500+ Words Essay on Importance of Education in English
  • 500+ Words Essay on Newspaper in English For Students
  • Essay on My Mother: 10 lines, 100 Words and 200 words essay
  • Essay on My Family: Short, 10 Lines, 100 Words Essay
  • 200+ Action Words in English: Know How to Use
  • Essay on My Favourite Teacher (10 Lines, 100 Words, 200 Words)
  • Grade 5 English Worksheet 2: Synonyms Worksheet
  • Essay on Summer Vacation For Students in English: Samples Class 3 to 5
  • 500+ Words Essay on Air Pollution
  • 50+ Words That Start With R: Check their Meaning
  • 1000 Most Common Words in the English Language
  • 70+ New Words in English With Their Meaning
  • Grade 5 English Worksheet 1: Reading Comprehension Worksheet
  • CBSE Class 9 Science Notes 2023-2024
  • CBSE Class 8 Science Notes 2023-24

Essay on Science in English: Check 200, 300 & 500 Words Essay

Science is the study of logic. It explains why the world is round, why stars twinkle, why light travels faster than sound, why hawks soar higher than crows, why sunflowers face the sun and other phenomena. Science answers every question logically rather than offering mystical interpretations. Students are very interested in science as a topic. This subject is indeed crucial for those hoping to pursue careers in science and related professions.

People who are knowledgeable in science are more self-assured and aware of their environment. Knowing the cause and origin of natural events, a person knowledgeable in science will not be afraid of them.

However, science also has a big impact on a country’s technological advancement and illiteracy.

Table of Content

English-language Long and Short Science Essay

Essay on science  (200 words), essay on science (300 words), essay on science (400 words), essay on science (500 words), essay on science (600 words).

We have included a brief and lengthy English essay on science below for your knowledge and convenience. The writings have been thoughtfully crafted to impart to you the relevance and meaning of science. You will understand what science is, why it matters in daily life, and how it advances national progress after reading the writings. These science essays can be used for essay writing, debate, and other related activities at your institution or school.

Science entails a thorough examination of the behavior of the physical and natural world. Research, experimentation, and observation are used in the study.

The scientific disciplines are diverse. The social sciences, formal sciences, and natural sciences are some of them. Subcategories and sub-sub-categories have been created from these basic categories. The natural sciences include physics, chemistry, biology, earth science, and astronomy; the social sciences include history, geography, economics, political science, sociology, psychology, social studies, and anthropology; and the formal sciences include computer science, logic, statistics, decision theory, and mathematics.

The world has positively transformed because of science. Throughout history, science has produced several inventions that have improved human convenience. We cannot fathom our lives without several of these inventions since they have become essential parts of them.

Global scientists persist in their experiments and occasionally produce more advanced innovations, some of which spark global revolutions. Even if science is helpful, some people have abused knowledge, usually those in positions of authority, to drive an arms race and destroy the environment.

There is no common ground between the ideologies of science and religion. These seeming opposite viewpoints have historically led to a number of confrontations and still do.

Science is a way to learn about, comprehend, examine, and experiment with the physical and natural features of the world in order to apply it to the development of newer technologies that improve human convenience. In science, observation and experimentation are broad and not restricted to a specific concept or area of study.

Applications of Science

Science has given us almost everything we use on a daily basis. Everything, from laptops to washing machines, microwaves to cell phones, and refrigerators to cars, is the result of scientific experimentation. Here are some ways that science affects our daily lives:

Not only are refrigerators, grills, and microwaves examples of scientific inventions, but gas stoves, which are frequently used for food preparation, are as well.

Medical Interventions

Scientific advancements have made it feasible to treat a number of illnesses and conditions. Thus, science encourages healthy living and has helped people live longer.

Interaction

These days, mobile phones and internet connections are necessities in our life and were all made possible by scientific advancements. These innovations have lowered barriers to communication and widened global connections.

E nergy Source

The creation and application of numerous energy forms have been facilitated by the discovery of atomic energy. One of its greatest innovations is electricity, and everyone is aware of the effects it has on daily life.

Variety in Cuisine

There has also been an increase in food diversity. These days, a wide variety of fruits and vegetables are available year-round. It’s not necessary to wait for a given season to enjoy a certain meal. This modification is the result of scientific experimentation.

So, science is a part of our daily existence. Without scientific advancements, our lives would have been considerably more challenging and varied. Nonetheless, we cannot ignore the fact that a great deal of scientific innovation has contributed to environmental deterioration and a host of health issues for humankind.

There are essentially three main disciplines of science. The Natural Sciences, Social Sciences, and Formal Sciences are some of them. To examine different aspects, these branches are further divided into subcategories. This is a thorough examination of these groups and their subgroups.

Scientific Subdisciplines

Natural Science

This is the study of natural phenomena, as the name implies. It investigates how the cosmos and the world function. Physical science and life science are subcategories of natural science.

a) Science of Physics

The subcategories of physical science comprise the following:

  • Physics is the study of matter’s and energy’s properties.
  • Chemistry is the study of the materials that make up matter.
  • The study of space and celestial bodies is called astronomy.
  • Ecology is the study of how living things interact with their natural environments and with one another.
  • Geology: It studies the composition and physical makeup of Earth.
  • Earth science is the study of the atmosphere and the physical makeup of the planet.
  • The study of the physical and biological components and phenomena of the ocean is known as oceanography.
  • Meteorology: It studies the atmospheric processes.

The subcategories of life science include the following:

  • The study of living things is called biology.
  • The study of plants is known as botany.
  • The study of animals is known as zoology.

c) Social Science

This includes examining social patterns and behavioral patterns in people. It is broken down into more than one subcategory. Among them are:

  • History: The examination of past occurrences
  • Political science is the study of political processes and governmental structures.
  • Geographic: Study of the atmospheric and physical characteristics of Earth.
  • Human society is studied in social studies.
  • Sociology: The study of how societies form and operate.

Academic Sciences

It is the area of study that examines formal systems like logic and mathematics. It encompasses the subsequent subcategories:

  • Numbers are studied in mathematics.
  • Reasoning is the subject of logic.
  • Statistics: It is the study of numerical data analysis.
  • Mathematical analysis of decision-making in relation to profit and loss is known as decision theory.
  • The study of abstract organization is known as systems theory.
  • Computer science is the study of engineering and experimentation as a foundation for computer design and use.

Scientists from several fields have been doing in-depth research and testing numerous facets of the subject matter in order to generate novel ideas, innovations, and breakthroughs. Although these discoveries and technologies have made life easier for us, they have also permanently harmed both the environment and living things.

Introduction

Science is the study of various physical and natural phenomena’ structures and behaviors. Before drawing any conclusions, scientists investigate these factors, make extensive observations, and conduct experiments. In the past, science has produced a number of inventions and discoveries that have been beneficial to humanity.

I deas in Religion and Science

In science, new ideas and technologies are developed through a methodical and rational process; in religion, however, beliefs and faith are the only factors considered. In science, conclusions are reached by careful observation, analysis, and experimentation; in religion, however, conclusions are rarely reached through reason. As a result, they have very different perspectives on things.

Science and Religion at Odds

Because science and religion hold different opinions on many issues, they are frequently perceived as being at odds. Unfortunately, these disputes occasionally cause social unrest and innocent people to suffer. These are a few of the most significant disputes that have happened.

The World’s Creation

The world was formed in six days, according to many conservative Christians, sometime between 4004 and 8000 BCE. However, cosmologists assert that the Earth originated about 4.5 billion years ago and that the cosmos may be as old as 13.7 billion years.

The Earth as the Universe’s Center

Among the most well-known clashes is this one. Earth was considered to be the center of the universe by the Roman Catholic Church. They say that it is surrounded by the Sun, Moon, stars, and other planets. Famous Italian mathematician and astronomer Galileo Galilei’s discovery of the heliocentric system—in which the Sun is at the center of the solar system and the Earth and other planets orbit it—led to the conflict.

Eclipses of the Sun and Moon

Iraq was the scene of one of the first wars. The locals were informed by the priests that the moon eclipse was caused by the gods’ restlessness. These were seen as foreboding and intended to overthrow the kings. When the local astronomers proposed a scientific explanation for the eclipse, a disagreement arose.

There are still many myths and superstitions concerning solar and lunar eclipses around the world, despite astronomers providing a compelling and rational explanation for their occurrence.

In addition to these, there are a number of other fields in which religious supporters and scientists hold divergent opinions. While scientists, astronomers, and biologists have evidence to support their claims, the majority of people adhere closely to religious beliefs.

Not only do religious activists frequently oppose scientific methods and ideas, but many other facets of society have also taken issue with science since its discoveries are leading to a host of social, political, environmental, and health problems. Nuclear weapons are one example of a scientific invention that threatens humanity. In addition, the processes involved in preparation and the utilization of the majority of scientifically created equipment contribute to pollution, making life more difficult for all.

In the previous few decades, a number of scientific advancements and discoveries have greatly eased people’s lives. The previous ten years were not an anomaly. A good number of important scientific discoveries were acknowledged. The top ten most amazing recent scientific inventions are shown below.

New Developments and Findings in Science

Amputee Gains Control of Biomechanical Hand via Mental After a tragic accident took away his forearm, Pierpaolo Petruzziello, an Italian, used his mind to control a biomechanical hand attached to his arm. The hand used wires and electrodes to connect to the nerves in his arm. He became the first to become skilled at doing motions like gripping objects, wriggling his fingers, and moving.

The Global Positioning System

In 2005, the Global Positioning System, or GPS as it is more often known, went into commercial use. It was incorporated into mobile devices and worked wonders for tourists all over the world. Traveling to more recent locations and needing instructions couldn’t be simpler.

The Self-Driving Car Toyota debuted Prius shortly after Google launched its own self-driving car experiment in 2008. The accelerator, steering wheel, and brake pedals are absent from this vehicle. It runs without the need for user input because it is driven by an electric motor. To guarantee that the driverless experience is seamless and secure, it is integrated with specialized software, a collection of sensors, and precise digital maps.

Android, widely regarded as one of the most significant innovations of the decade, revolutionized the market by flooding it with devices running Java and Symbian earlier on. These days, Android is the operating system used by the majority of smartphones. Millions of applications are supported by it.

c) Computer Vision

A number of sub-domains fall under the umbrella of computer vision, including learning, video tracking, object recognition, object pose estimation, event detection, indexing, picture restoration, and scene reconstruction. In order to produce symbolic information, the field includes methods for processing, analyzing, obtaining, and understanding images in high-dimensional data from the real world.

d) Touch Screen Technology

It appears that touch screen technology has taken over the planet. The popularity of touch screen gadgets can be attributed to their ease of use. These gadgets are becoming quite popular everywhere.

e) Method of 3D Printing

The 3D printer is capable of producing a wide range of items, such as lamps, cookware, accessories, and much more. Alternatively referred to as additive manufacturing, this process uses digital model data from electronic data sources like Additive Manufacturing Files (AMF) to construct three-dimensional items of any shape.

Git Hub is an online hosting service and version control repository that was founded in 2008. It provides features including bug tracking, task management, feature requests, and the sharing of codes, apps, and other materials. The GitHub platform was first developed in 2007, and the website went live in 2008.

f) Smart Timepieces

The market for smart watches has been around for a while. The more recent models, like the one introduced by Apple, have garnered enormous popularity and come with a number of extra capabilities. Nearly all of the functionality found on smartphones are included in these watches, which are also more convenient to wear and use.

g) Websites for Crowdfunding

The emergence of crowdsourcing websites like Indiegogo, Kickstarter, and GoFundMe has been a blessing for innovators. Inventors, artists, and other creative people can share their ideas and gain the funding they need to put them into action by using these websites.

Global scientists constantly observe and experiment to develop new scientific discoveries that improve people’s lives. Not only do they consistently create new technologies, but they also adapt the ones that already exist whenever there is an opportunity. Even while these innovations have made life easier for humans, you are all aware of the numerous environmental, social, and political risks they have brought about.

500+ Words Essay on Mother Teresa in English For Students 500+ Words Essay on Swami Vivekananda in English for Students Rabindranath Tagore Essay in English For Students APJ Abdul Kalam Essay For Students: Check 500 Words Essay

Essay on Science- FAQs

Who is father of science.

Galileo is the father of science.

Why is it called science?

The word “scientia” has Latin origins and originally meant “knowledge,” “an expertness,” or “experience.”

What is science for students?

Science is the study of the world by observation, recording, listening, and watching. Science is the application of intellectual inquiry into the nature of the world and its behavior. Think like a scientist, anyone can.

What is science’s primary goal or objective?

Science’s primary goal is to provide an explanation for the facts. Moreover, science does not prohibit the explanation of facts in an arbitrary manner. Additionally, science organizes the data and develops theories to explain the data.

Describe what a scientific fact is.

Repeatable, meticulous observations or measurements made through experiments or other methods are referred to as scientific facts. Furthermore, empirical evidence is another name for a scientific fact. Most importantly, the development of scientific hypotheses depends on scientific facts.

Please Login to comment...

Similar reads.

  • English Blogs
  • School English

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • CAREER FEATURE
  • 08 May 2024

Illuminating ‘the ugly side of science’: fresh incentives for reporting negative results

  • Rachel Brazil 0

Rachel Brazil is a freelance journalist in London, UK.

You can also search for this author in PubMed   Google Scholar

Sarahanne Field giving a talk

The editor-in-chief of the Journal of Trial & Error , Sarahanne Field wants to publish the messy, null and negative results sitting in researchers’ file drawers. Credit: Sander Martens

Editor-in-chief Sarahanne Field describes herself and her team at the Journal of Trial & Error as wanting to highlight the “ugly side of science — the parts of the process that have gone wrong”.

She clarifies that the editorial board of the journal, which launched in 2020 , isn’t interested in papers in which “you did a shitty study and you found nothing. We’re interested in stuff that was done methodologically soundly, but still yielded a result that was unexpected.” These types of result — which do not prove a hypothesis or could yield unexplained outcomes — often simply go unpublished, explains Field, who is also an open-science researcher at the University of Groningen in the Netherlands. Along with Stefan Gaillard, one of the journal’s founders, she hopes to change that.

Calls for researchers to publish failed studies are not new. The ‘file-drawer problem’ — the stacks of unpublished, negative results that most researchers accumulate — was first described in 1979 by psychologist Robert Rosenthal . He argued that this leads to publication bias in the scientific record: the gap of missing unsuccessful results leads to overemphasis on the positive results that do get published.

essay about a scientific

Careers Collection: Publishing

Over the past 30 years, the proportion of negative results being published has decreased further. A 2012 study showed that, from 1990 to 2007, there was a 22% increase in positive conclusions in papers; by 2007, 85% of papers published had positive results 1 . “People fail to report [negative] results, because they know they won’t get published — and when people do attempt to publish them, they get rejected,” says Field. A 2022 survey of researchers in France in chemistry, physics, engineering and environmental sciences showed that, although 81% had produced relevant negative results and 75% were willing to publish them, only 12.5% had the opportunity to do so 2 .

One factor that is leading some researchers to revisit the problem is the growing use of predictive modelling using machine-learning tools in many fields. These tools are trained on large data sets that are often derived from published work, and scientists have found that the absence of negative data in the literature is hampering the process. Without a concerted effort to publish more negative results that artificial intelligence (AI) can be trained on, the promise of the technology could be stifled.

“Machine learning is changing how we think about data,” says chemist Keisuke Takahashi at Hokkaido University in Japan, who has brought the issue to the attention of the catalysis-research community . Scientists in the field have typically relied on a mixture of trial and error and serendipity in their experiments, but there is hope that AI could provide a new route for catalyst discovery. Takahashi and his colleagues mined data from 1,866 previous studies and patents to train a machine-learning model to predict the best catalyst for the reaction between methane and oxygen to form ethane and ethylene, both of which are important chemicals used in industry 3 . But, he says, “over the years, people have only collected the good data — if they fail, they don’t report it”. This led to a skewed model that, in some cases, enhanced the predicted performance of a material, rather than realistically assessing its properties.

Portrait of Felix Strieth-Kalthoff in the lab

Synthetic organic chemist Felix Strieth-Kalthoff found that published data were too heavily biased toward positive results to effectively train an AI model to optimize chemical reaction yields. Credit: Cindy Huang

Alongside the flawed training of AI models, the huge gap of negative results in the scientific record continues to be a problem across all disciplines. In areas such as psychology and medicine, publication bias is one factor exacerbating the ongoing reproducibility crisis — in which many published studies are impossible to replicate. Without sharing negative studies and data, researchers could be doomed to repeat work that led nowhere. Many scientists are calling for changes in academic culture and practice — be it the creation of repositories that include positive and negative data, new publication formats or conferences aimed at discussing failure. The solutions are varied, but the message is the same: “To convey an accurate picture of the scientific process, then at least one of the components should be communicating all the results, [including] some negative results,” says Gaillard, “and even where you don’t end up with results, where it just goes wrong.”

Science’s messy side

Synthetic organic chemist Felix Strieth-Kalthoff, who is now setting up his own laboratory at the University of Wuppertal, Germany, has encountered positive-result bias when using data-driven approaches to optimize the yields of certain medicinal-chemistry reactions. His PhD work with chemist Frank Glorius at the University of Münster, Germany, involved creating models that could predict which reactants and conditions would maximize yields. Initially, he relied on data sets that he had generated from high-throughput experiments in the lab, which included results from both high- and low-yield reactions, to train his AI model. “Our next logical step was to do that based on the literature,” says Strieth-Kalthoff. This would allow him to curate a much larger data set to be used for training.

But when he incorporated real data from the reactions database Reaxys into the training process, he says, “[it] turned out they don’t really work at all”. Strieth-Kalthoff concluded the errors were due the lack of low-yield reactions 4 ; “All of the data that we see in the literature have average yields of 60–80%.” Without learning from the messy ‘failed’ experiments with low yields that were present in the initial real-life data, the AI could not model realistic reaction outcomes.

Although AI has the potential to spot relationships in complex data that a researcher might not see, encountering negative results can give experimentalists a gut feeling, says molecular modeller Berend Smit at the Swiss Federal Institute of Technology Lausanne. The usual failures that every chemist experiences at the bench give them a ‘chemical intuition’ that AI models trained only on successful data lack.

Smit and his team attempted to embed something similar to this human intuition into a model tasked with designing a metal-organic framework (MOF) with the largest known surface area for this type of material. A large surface area allows these porous materials to be used as reaction supports or molecular storage reservoirs. “If the binding [between components] is too strong, it becomes amorphous; if the binding is too weak, it becomes unstable, so you need to find the sweet spot,” Smit says. He showed that training the machine-learning model on both successful and unsuccessful reaction conditions created better predictions and ultimately led to one that successfully optimized the MOF 5 . “When we saw the results, we thought, ‘Wow, this is the chemical intuition we’re talking about!’” he says.

According to Strieth-Kalthoff, AI models are currently limited because “the data that are out there just do not reflect all of our knowledge”. Some researchers have sought statistical solutions to fill the negative-data gap. Techniques include oversampling, which means supplementing data with several copies of existing negative data or creating artificial data points, for example by including reactions with a yield of zero. But, he says, these types of approach can introduce their own biases.

Portrait of Ella Peltonen

Computer scientist Ella Peltonen helped to organize the first International Workshop on Negative Results in Pervasive Computing in 2022 to give researchers an opportunity to discuss failed experiments. Credit: University of Oulu

Capturing more negative data is now a priority for Takahashi. “We definitely need some sort of infrastructure to share the data freely.” His group has created a website for sharing large amounts of experimental data for catalysis reactions . Other organizations are trying to collect and publish negative data — but Takahashi says that, so far, they lack coordination, so data formats aren’t standardized. In his field, Strieth-Kalthoff says, there are initiatives such as the Open Reaction Database , launched in 2021 to share organic-reaction data and enable training of machine-learning applications. But, he says, “right now, nobody’s using it, [because] there’s no incentive”.

Smit has argued for a modular open-science platform that would directly link to electronic lab notebooks to help to make different data types extractable and reusable . Through this process, publication of negative data in peer-reviewed journals could be skipped, but the information would still be available for researchers to use in AI training. Strieth-Kalthoff agrees with this strategy in theory, but thinks it’s a long way off in practice, because it would require analytical instruments to be coupled to a third-party source to automatically collect data — which instrument manufacturers might not agree to, he says.

Publishing the non-positive

In other disciplines, the emphasis is still on peer-reviewed journals that will publish negative results. Gaillard, a science-studies PhD student at Radboud University in Nijmegen, the Netherlands, co-founded the Journal of Trial & Error after attending talks on how science can be made more open. Gaillard says that, although everyone whom they approached liked the idea of the journal, nobody wanted to submit articles at first. He and the founding editorial team embarked on a campaign involving cold calls and publicity at open-science conferences. “Slowly, we started getting our first submissions, and now we just get people sending things in [unsolicited],” he says. Most years the journal publishes one issue of about 8–14 articles, and it is starting to publish more special issues. It focuses mainly on the life sciences and data-based social sciences.

In 2008, David Alcantara, then a chemistry PhD student at the University of Seville in Spain who was frustrated by the lack of platforms for sharing negative results, set up The All Results journals, which were aimed at disseminating results regardless of the outcome . Of the four disciplines included at launch, only the biology journal is still being published. “Attracting submissions has always posed a challenge,” says Alcantara, now president at the consultancy and training organization the Society for the Improvement of Science in Seville.

But Alcantara thinks there has been a shift in attitudes: “More established journals [are] becoming increasingly open to considering negative results for publication.” Gaillard agrees: “I’ve seen more and more journals, like PLoS ONE , for example, that explicitly mentioned that they also publish negative results.” ( Nature welcomes submissions of replication studies and those that include null results, as described in this 2020 editorial .)

Journals might be changing their publication preferences, but there are still significant disincentives that stop researchers from publishing their file-drawer studies. “The current academic system often prioritizes high-impact publications and ground-breaking discoveries for career advancement, grants and tenure,” says Alcantara, noting that negative results are perceived as contributing little to nothing to these endeavours. Plus, there is still a stigma associated with any kind of failure . “People are afraid that this will look negative on their CV,” says Gaillard. Smit describes reporting failed experiments as a no-win situation: “It’s more work for [researchers], and they don’t get anything in return in the short term.” And, jokes Smit, what’s worse is that they could be providing data for an AI tool to take over their role.

Ultimately, most researchers conclude that publishing their failed studies and negative data is just not worth the time and effort — and there’s evidence that they judge others’ negative research more harshly than positive outcomes. In a study published in August, 500 researchers from top economics departments around the world were randomized to two groups and asked to judge a hypothetical research paper. Half of the participants were told that the study had a null conclusion, and the other half were told the results were sizeably significant. The null results were perceived to be 25% less likely to be published, of lower quality and less important than were the statistically significant findings 6 .

Some researchers have had positive experiences sharing their unsuccessful findings. For example, in 2021, psychologist Wendy Ross at the London Metropolitan University published her negative results from testing a hypothesis about human problem-solving in the Journal of Trial & Error 7 , and says the paper was “the best one I have published to date”. She adds, “Understanding the reasons for null results can really test and expand our theoretical understanding.”

Fields forging solutions

The field of psychology has introduced one innovation that could change publication biases — registered reports (RRs). These peer-reviewed reports , first published in 2014, came about largely as a response to psychology’s replication crisis, which began in around 2011. RRs set out the methodology of a study before the results are known, to try to prevent selective reporting of positive results. Daniël Lakens, who studies science-reward structures at Eindhoven University of Technology in the Netherlands, says there is evidence that RRs increase the proportion of negative results in the psychology literature.

In a 2021 study, Lakens analysed the proportion of published RRs whose results eventually support the primary hypothesis. In a random sample of hypothesis-testing studies from the standard psychology literature, 96% of the results were positive. In RRs, this fell to only 44% 8 . Lakens says the study shows “that if you offer this as an option, many more null results enter the scientific literature, and that is a desirable thing”. At least 300 journals, including Nature , are now accepting RRs, and the format is spreading to journals in biology, medicine and some social-science fields.

Yet another approach has emerged from the field of pervasive computing, the study of how computer systems are integrated into physical surroundings and everyday life. About four years ago, members of the community started discussing reproducibility, says computer scientist Ella Peltonen at the University of Oulu in Finland. Peltonen says that researchers realized that, to avoid the repetition of mistakes, there was a need to discuss the practical problems with studies and failed results that don’t get published. So in 2022, Peltonen and her colleagues held the first virtual International Workshop on Negative Results in Pervasive Computing (PerFail) , in conjunction with the field’s annual conference, the International Conference on Pervasive Computing and Communications.

Peltonen explains that PerFail speakers first present their negative results and then have the same amount of time for discussion afterwards, during which participants tease out how failed studies can inform future work. “It also encourages the community to showcase that things require effort and trial and error, and there is value in that,” she adds. Now an annual event, the organizers invite students to attend so they can see that failure is a part of research and that “you are not a bad researcher because you fail”, says Peltonen.

In the long run, Alcantara thinks a continued effort to persuade scientists to share all their results needs to be coupled with policies at funding agencies and journals that reward full transparency. “Criteria for grants, promotions and tenure should recognize the value of comprehensive research dissemination, including failures and negative outcomes,” he says. Lakens thinks funders could be key to boosting the RR format, as well. Funders, he adds, should say, “We want the research that we’re funding to appear in the scientific literature, regardless of the significance of the finding.”

There are some positive signs of change about sharing negative data: “Early-career researchers and the next generation of scientists are particularly receptive to the idea,” says Alcantara. Gaillard is also optimistic, given the increased interest in his journal, including submissions for an upcoming special issue on mistakes in the medical domain. “It is slow, of course, but science is a bit slow.”

doi: https://doi.org/10.1038/d41586-024-01389-7

Fanelli, D. Scientometrics 90 , 891–904 (2012).

Article   Google Scholar  

Herbet, M.-E., Leonard, J., Santangelo, M. G. & Albaret, L. Learned Publishing 35 , 16–29 (2022).

Fujima, J., Tanaka, Y., Miyazato, I., Takahashi, L. & Takahashi, K. Reaction Chem. Eng. 5 , 903–911 (2020).

Strieth-Kalthoff, F. et al. Angew. Chem. Int. Edn 61 , e202204647 (2022).

Moosavi, S. M. et al. Nature Commun. 10 , 539 (2019).

Article   PubMed   Google Scholar  

Chopra, F., Haaland, I., Roth, C. & Stegmann, A. Econ. J. 134 , 193–219 (2024).

Ross, W. & Vallée-Tourangeau, F. J. Trial Error https://doi.org/10.36850/e4 (2021).

Scheel, A. M., Schijen, M. R. M. J. & Lakens, D. Adv. Methods Pract. Psychol. Sci . https://doi.org/10.1177/25152459211007467 (2021).

Download references

Related Articles

essay about a scientific

  • Scientific community

I’m worried I’ve been contacted by a predatory publisher — how do I find out?

I’m worried I’ve been contacted by a predatory publisher — how do I find out?

Career Feature 15 MAY 24

How I fled bombed Aleppo to continue my career in science

How I fled bombed Aleppo to continue my career in science

Career Feature 08 MAY 24

Hunger on campus: why US PhD students are fighting over food

Hunger on campus: why US PhD students are fighting over food

Career Feature 03 MAY 24

Mount Etna’s spectacular smoke rings and more — April’s best science images

Mount Etna’s spectacular smoke rings and more — April’s best science images

News 03 MAY 24

Plagiarism in peer-review reports could be the ‘tip of the iceberg’

Plagiarism in peer-review reports could be the ‘tip of the iceberg’

Nature Index 01 MAY 24

Algorithm ranks peer reviewers by reputation — but critics warn of bias

Algorithm ranks peer reviewers by reputation — but critics warn of bias

Nature Index 25 APR 24

Researchers want a ‘nutrition label’ for academic-paper facts

Researchers want a ‘nutrition label’ for academic-paper facts

Nature Index 17 APR 24

Postdoc in CRISPR Meta-Analytics and AI for Therapeutic Target Discovery and Priotisation (OT Grant)

APPLICATION CLOSING DATE: 14/06/2024 Human Technopole (HT) is a new interdisciplinary life science research institute created and supported by the...

Human Technopole

essay about a scientific

Research Associate - Metabolism

Houston, Texas (US)

Baylor College of Medicine (BCM)

essay about a scientific

Postdoc Fellowships

Train with world-renowned cancer researchers at NIH? Consider joining the Center for Cancer Research (CCR) at the National Cancer Institute

Bethesda, Maryland

NIH National Cancer Institute (NCI)

Faculty Recruitment, Westlake University School of Medicine

Faculty positions are open at four distinct ranks: Assistant Professor, Associate Professor, Full Professor, and Chair Professor.

Hangzhou, Zhejiang, China

Westlake University

essay about a scientific

PhD/master's Candidate

PhD/master's Candidate    Graduate School of Frontier Science Initiative, Kanazawa University is seeking candidates for PhD and master's students i...

Kanazawa University

essay about a scientific

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

MIT Technology Review

  • Newsletters

A wave of retractions is shaking physics

Grappling with problematic papers and poorly documented data, researchers and journal editors gathered in Pittsburgh to hash out the best way forward.

  • Sophia Chen archive page

&quot;&quot;

Recent highly publicized scandals have gotten the physics community worried about its reputation—and its future. Over the last five years, several claims of major breakthroughs in quantum computing and superconducting research, published in prestigious journals, have disintegrated as other researchers found they could not reproduce the blockbuster results. 

Last week, around 50 physicists, scientific journal editors, and emissaries from the National Science Foundation gathered at the University of Pittsburgh to discuss the best way forward.“To be honest, we’ve let it go a little too long,” says physicist Sergey Frolov of the University of Pittsburgh, one of the conference organizers. 

The attendees gathered in the wake of retractions from two prominent research teams. One team, led by physicist Ranga Dias of the University of Rochester, claimed that it had invented the world’s first room temperature superconductor in a 2023 paper in Nature . After independent researchers reviewed the work, a subsequent investigation from Dias’s university found that he had fabricated and falsified his data. Nature retracted the paper in November 2023. Last year, Physical Review Letters retracted a 2021 publication on unusual properties in manganese sulfide that Dias co-authored. 

The other high-profile research team consisted of researchers affiliated with Microsoft working to build a quantum computer. In 2021, Nature retracted the team’s 2018 paper that claimed the creation of a pattern of electrons known as a Majorana particle, a long-sought breakthrough in quantum computing. Independent investigations of that research found that the researchers had cherry-picked their data, thus invalidating their findings. Another less-publicized research team pursuing Majorana particles fell to a similar fate, with Science retracting a 2017 article claiming indirect evidence of the particles in 2022.

In today’s scientific enterprise, scientists perform research and submit the work to editors. The editors assign anonymous referees to review the work, and if the paper passes review, the work becomes part of the accepted scientific record. When researchers do publish bad results, it’s not clear who should be held accountable—the referees who approved the work for publication, the journal editors who published it, or the researchers themselves. “Right now everyone’s kind of throwing the hot potato around,” says materials scientist Rachel Kurchin of Carnegie Mellon University, who attended the Pittsburgh meeting.

Much of the three-day meeting, named the International Conference on Reproducibility in Condensed Matter Physics (a field that encompasses research into various states of matter and why they exhibit certain properties), focused on the basic scientific principle that an experiment and its analysis must yield the same results when repeated. “If you think of research as a product that is paid for by the taxpayer, then reproducibility is the quality assurance department,” Frolov told MIT Technology Review . Reproducibility offers scientists a check on their work, and without it, researchers might waste time and money on fruitless projects based on unreliable prior results, he says. 

In addition to presentations and panel discussions, there was a workshop during which participants split into groups and drafted ideas for guidelines that researchers, journals, and funding agencies could follow to prioritize reproducibility in science. The tone of the proceedings stayed civil and even lighthearted at times. Physicist Vincent Mourik of Forschungszentrum Jülich, a German research institution, showed a photo of a toddler eating spaghetti to illustrate his experience investigating another team’s now-retracted experiment. ​​Occasionally the discussion almost sounded like a couples counseling session, with NSF program director Tomasz Durakiewicz asking a panel of journal editors and a researcher to reflect on their “intimate bond based on trust.”

But researchers did not shy from directly criticizing Nature , Science , and the Physical Review family of journals, all of which sent editors to attend the conference. During a panel, physicist Henry Legg of the University of Basel in Switzerland called out the journal Physical Review B for publishing a paper on a quantum computing device by Microsoft researchers that, for intellectual-property reasons, omitted information required for reproducibility. “It does seem like a step backwards,” Legg said. (Sitting in the audience, Physical Review B editor Victor Vakaryuk said that the paper’s authors had agreed to release “the remaining device parameters” by the end of the year.) 

Journals also tend to “focus on story,” said Legg, which can lead editors to be biased toward experimental results that match theoretical predictions. Jessica Thomas, the executive editor of the American Physical Society, which publishes the Physical Review journals, pushed back on Legg’s assertion. “I don’t think that when editors read papers, they’re thinking about a press release or [telling] an amazing story,” Thomas told MIT Technology Review . “I think they’re looking for really good science.” Describing science through narrative is a necessary part of communication, she says. “We feel a responsibility that science serves humanity, and if humanity can’t understand what’s in our journals, then we have a problem.” 

Frolov, whose independent review with Mourik of the Microsoft work spurred its retraction, said he and Mourik have had to repeatedly e-mail the Microsoft researchers and other involved parties to insist on data. “You have to learn how to be an asshole,” he told MIT Technology Review . “It shouldn’t be this hard.” 

At the meeting, editors pointed out that mistakes, misconduct, and retractions have always been a part of science in practice. “I don’t think that things are worse now than they have been in the past,” says Karl Ziemelis, an editor at Nature .

Ziemelis also emphasized that “retractions are not always bad.” While some retractions occur because of research misconduct, “some retractions are of a much more innocent variety—the authors having made or being informed of an honest mistake, and upon reflection, feel they can no longer stand behind the claims of the paper,” he said while speaking on a panel. Indeed, physicist James Hamlin of the University of Florida, one of the presenters and an independent reviewer of Dias’s work, discussed how he had willingly retracted a 2009 experiment published in Physical Review Letters in 2021 after another researcher’s skepticism prompted him to reanalyze the data. 

What’s new is that “the ease of sharing data has enabled scrutiny to a larger extent than existed before,” says Jelena Stajic, an editor at Science . Journals and researchers need a “more standardized approach to how papers should be written and what needs to be shared in peer review and publication,” she says.

Focusing on the scandals “can be distracting” from systemic problems in reproducibility, says attendee Frank Marsiglio, a physicist at the University of Alberta in Canada. Researchers aren’t required to make unprocessed data readily available for outside scrutiny. When Marsiglio has revisited his own published work from a few years ago, sometimes he’s had trouble recalling how his former self drew those conclusions because he didn’t leave enough documentation. “How is somebody who didn’t write the paper going to be able to understand it?” he says.

Problems can arise when researchers get too excited about their own ideas. “What gets the most attention are cases of fraud or data manipulation, like someone copying and pasting data or editing it by hand,” says conference organizer Brian Skinner, a physicist at Ohio State University. “But I think the much more subtle issue is there are cool ideas that the community wants to confirm, and then we find ways to confirm those things.”

But some researchers may publish bad data for a more straightforward reason. The academic culture, popularly described as “publish or perish,” creates an intense pressure on researchers to deliver results. “It’s not a mystery or pathology why somebody who’s under pressure in their work might misstate things to their supervisor,” said Eugenie Reich, a lawyer who represents scientific whistleblowers, during her talk.

Notably, the conference lacked perspectives from researchers based outside the US, Canada, and Europe, and from researchers at companies. In recent years, academics have flocked to companies such as Google, Microsoft, and smaller startups to do quantum computing research, and they have published their work in Nature , Science , and the Physical Review journals. Frolov says he reached out to researchers from a couple of companies, but “that didn’t work out just because of timing,” he says. He aims to include researchers from that arena in future conversations.

After discussing the problems in the field, conference participants proposed feasible solutions for sharing data to improve reproducibility. They discussed how to persuade the community to view data sharing positively, rather than seeing the demand for it as a sign of distrust. They also brought up the practical challenges of asking graduate students to do even more work by preparing their data for outside scrutiny when it may already take them over five years to complete their degree. Meeting participants aim to publicly release a paper with their suggestions. “I think trust in science will ultimately go up if we establish a robust culture of shareable, reproducible, replicable results,” says Frolov. 

Deepfakes of your dead loved ones are a booming Chinese business

People are seeking help from AI-generated avatars to process their grief after a family member passes away.

  • Zeyi Yang archive page

Why Threads is suddenly popular in Taiwan

During Taiwan’s presidential election, Meta’s social network emerged as a surprise hit.

Technology is probably changing us for the worse—or so we always think

For nearly a hundred years in this publication (and long before that elsewhere) people have worried that new technologies could alter what it means to be human.

  • Timothy Maher archive page

Threads is giving Taiwanese users a safe space to talk about politics

But Meta's discomfort with political content could end up pushing them away.

Stay connected

Get the latest updates from mit technology review.

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at [email protected] with a list of newsletters you’d like to receive.

ScienceDaily

Two decades of studies suggest health benefits associated with plant-based diets

But researchers caution against broad diet recommendations until remaining knowledge gaps are filled.

Vegetarian and vegan diets are generally associated with better status on various medical factors linked to cardiovascular health and cancer risk, as well as lower risk of cardiovascular diseases, cancer, and death, according to a new review of 49 previously published papers. Angelo Capodici and colleagues present these findings in the open-access journal PLOS ONE on May 15, 2024.

Prior studies have linked certain diets with increased risk of cardiovascular disease and cancer. A diet that is poor in plant products and rich in meat, refined grains, sugar, and salt is associated with higher risk of death. Reducing consumption of animal-based products in favor of plant-based products has been suggested to lower the risk of cardiovascular disease and cancer. However, the overall benefits of such diets remain unclear.

To deepen understanding of the potential benefits of plant-based diets, Capodici and colleagues reviewed 48 papers published between January 2000 and June 2023 that themselves compiled evidence from multiple prior studies. Following an "umbrella" review approach, they extracted and analyzed data from the 48 papers on links between plant-based diets, cardiovascular health, and cancer risk.

Their analysis showed that, overall, vegetarian and vegan diets have a robust statistical association with better health status on a number of risk factors associated with cardiometabolic diseases, cancer, and mortality, such as blood pressure, management of blood sugar, and body mass index. Such diets are associated with reduced risk of ischemic heart disease, gastrointestinal and prostate cancer, and death from cardiovascular disease.

However, among pregnant women specifically, those with vegetarian diets faced no difference in their risk of gestational diabetes and hypertension compared to those on non-plant-based diets.

Overall, these findings suggest that plant-based diets are associated with significant health benefits. However, the researchers note, the statistical strength of this association is significantly limited by the many differences between past studies in terms of the specific diet regimens followed, patient demographics, study duration, and other factors. Moreover, some plant-based diets may introduce vitamin and mineral deficiencies for some people. Thus, the researchers caution against large-scale recommendation of plant-based diets until more research is completed.

The authors add: "Our study evaluates the different impacts of animal-free diets for cardiovascular health and cancer risk showing how a vegetarian diet can be beneficial to human health and be one of the effective preventive strategies for the two most impactful chronic diseases on human health in the 21st century."

  • Diet and Weight Loss
  • Diseases and Conditions
  • Colon Cancer
  • Endangered Plants
  • Veterinary Medicine
  • Colorectal cancer
  • Ovarian cancer
  • Polyphenol antioxidant
  • Stomach cancer
  • Cervical cancer
  • HPV vaccine
  • Breast cancer

Story Source:

Materials provided by PLOS . Note: Content may be edited for style and length.

Journal Reference :

  • Angelo Capodici, Gabriele Mocciaro, Davide Gori, Matthew J. Landry, Alice Masini, Francesco Sanmarchi, Matteo Fiore, Angela Andrea Coa, Gisele Castagna, Christopher D. Gardner, Federica Guaraldi. Cardiovascular health and cancer risk associated with plant based diets: An umbrella review . PLOS ONE , 2024; 19 (5): e0300711 DOI: 10.1371/journal.pone.0300711

Cite This Page :

Explore More

  • Life Expectancy May Increase by 5 Years by 2050
  • Toward a Successful Vaccine for HIV
  • Highly Efficient Thermoelectric Materials
  • Toward Human Brain Gene Therapy
  • Whale Families Learn Each Other's Vocal Style
  • AI Can Answer Complex Physics Questions
  • Otters Use Tools to Survive a Changing World
  • Monogamy in Mice: Newly Evolved Type of Cell
  • Sustainable Electronics, Doped With Air
  • Male Vs Female Brain Structure

Trending Topics

Strange & offbeat.

  • The Magazine
  • City Journal
  • Contributors
  • Manhattan Institute
  • Email Alerts

essay about a scientific

Unscientific American

Science journalism surrenders to progressive ideology.

Michael Shermer got his first clue that things were changing at Scientific American in late 2018. The author had been writing his “Skeptic” column for the magazine since 2001. His monthly essays, aimed at an audience of both scientists and laymen, championed the scientific method, defended the need for evidence-based debate, and explored how cognitive and ideological biases can derail the search for truth. Shermer’s role models included two twentieth-century thinkers who, like him, relished explaining science to the public: Carl Sagan, the ebullient astronomer and TV commentator; and evolutionary biologist Stephen Jay Gould, who wrote a popular monthly column in Natural History magazine for 25 years. Shermer hoped someday to match Gould’s record of producing 300 consecutive columns. That goal would elude him.

In continuous publication since 1845, Scientific American is the country’s leading mainstream science magazine. Authors published in its pages have included Albert Einstein, Francis Crick, Jonas Salk, and J. Robert Oppenheimer—some 200 Nobel Prize winners in all. SciAm , as many readers call it, had long encouraged its authors to challenge established viewpoints. In the mid-twentieth century, for example, the magazine published a series of articles building the case for the then-radical concept of plate tectonics . In the twenty-first century, however, American scientific media, including Scientific American , began to slip into lockstep with progressive beliefs. Suddenly, certain orthodoxies—especially concerning race, gender, or climate—couldn’t be questioned.

“I started to see the writing on the wall toward the end of my run there,” Shermer told me. “I saw I was being slowly nudged away from certain topics.” One month, he submitted a column about the “fallacy of excluded exceptions,” a common logical error in which people perceive a pattern of causal links between factors but ignore counterexamples that don’t fit the pattern. In the story, Shermer debunked the myth of the “horror-film curse,” which asserts that bad luck tends to haunt actors who appear in scary movies. (The actors in most horror films survive unscathed, he noted, while bad luck sometimes strikes the casts of non-scary movies as well.) Shermer also wanted to include a serious example: the common belief that sexually abused children grow up to become abusers in turn. He cited evidence that “most sexually abused children do not grow up to abuse their own children” and that “most abusive parents were not abused as children.” And he observed how damaging this stereotype could be to abuse survivors; statistical clarity is all the more vital in such delicate cases, he argued. But Shermer’s editor at the magazine wasn’t having it. To the editor, Shermer’s effort to correct a common misconception might be read as downplaying the seriousness of abuse. Even raising the topic might be too traumatic for victims.

The following month, Shermer submitted a column discussing ways that discrimination against racial minorities, gays, and other groups has diminished (while acknowledging the need for continued progress). Here, Shermer ran into the same wall that Better Angels of Our Nature author Steven Pinker and other scientific optimists have faced. For progressives, admitting that any problem—racism, pollution, poverty—has improved means surrendering the rhetorical high ground. “They are committed to the idea that there is no cumulative progress,” Shermer says, and they angrily resist efforts to track the true prevalence, or the “base rate,” of a problem. Saying that “everything is wonderful and everyone should stop whining doesn’t really work,” his editor objected.

Shermer dug his grave deeper by quoting Manhattan Institute fellow Heather Mac Donald and The Coddling of the American Mind authors Greg Lukianoff and Jonathan Haidt, who argue that the rise of identity-group politics undermines the goal of equal rights for all. Shermer wrote that intersectional theory, which lumps individuals into aggregate identity groups based on race, sex, and other immutable characteristics, “is a perverse inversion” of Martin Luther King’s dream of a color-blind society. For Shermer’s editors, apparently, this was the last straw. The column was killed and Shermer’s contract terminated. Apparently, SciAm no longer had the ideological bandwidth to publish such a heterodox thinker.

American journalism has never been very good at covering science. In fact, the mainstream press is generally a cheap date when it comes to stories about alternative medicine, UFO sightings, pop psychology, or various forms of junk science. For many years, that was one factor that made Scientific American ’s rigorous reporting so vital. The New York Times , National Geographic , Smithsonian, and a few other mainstream publications also produced top-notch science coverage. Peer-reviewed academic journals aimed at specialists met a higher standard still. But over the past decade or so, the quality of science journalism—even at the top publications—has declined in a new and alarming way. Today’s journalistic failings don’t owe simply to lazy reporting or a weakness for sensationalism but to a sweeping and increasingly pervasive worldview.

It is hard to put a single name on this sprawling ideology. It has its roots both in radical 1960s critiques of capitalism and in the late-twentieth-century postmodern movement that sought to “problematize” notions of objective truth. Critical race theory, which sees structural racism as the grand organizing principle of our society, is one branch. Queer studies, which seeks to “deconstruct” traditional norms of family, sex, and gender, is another. Critics of this worldview sometimes call it “identity politics”; supporters prefer the term “intersectionality.” In managerial settings, the doctrine lives under the label of diversity, equity, and inclusion, or DEI: a set of policies that sound anodyne—but in practice, are anything but.

This dogma sees Western values, and the United States in particular, as uniquely pernicious forces in world history. And, as exemplified by the anticapitalist tirades of climate activist Greta Thunberg, the movement features a deep eco-pessimism buoyed only by the distant hope of a collectivist green utopia.

The DEI worldview took over our institutions slowly, then all at once. Many on the left, especially journalists, saw Donald Trump’s election in 2016 as an existential threat that necessitated dropping the guardrails of balance and objectivity. Then, in early 2020, Covid lockdowns put American society under unbearable pressure. Finally, in May 2020, George Floyd’s death under the knee of a Minneapolis police officer provided the spark. Protesters exploded onto the streets. Every institution, from coffeehouses to Fortune 500 companies, felt compelled to demonstrate its commitment to the new “antiracist” ethos. In an already polarized environment, most media outlets lunged further left. Centrists—including New York Times opinion editor James Bennet and science writer Donald G. McNeil, Jr. —were forced out, while radical progressive voices were elevated.

This was the national climate when Laura Helmuth took the helm of Scientific American in April 2020. Helmuth boasted a sterling résumé: a Ph.D. in cognitive neuroscience from the University of California–Berkeley and a string of impressive editorial jobs at outlets including Science , National Geographic , and the Washington Post . Taking over a large print and online media operation during the early weeks of the Covid pandemic couldn’t have been easy. On the other hand, those difficult times represented a once-in-a-lifetime opportunity for an ambitious science editor. Rarely in the magazine’s history had so many Americans urgently needed timely, sensible science reporting: Where did Covid come from? How is it transmitted? Was shutting down schools and businesses scientifically justified? What do we know about vaccines?

Scientific American did examine Covid from various angles, including an informative July 2020 cover story diagramming how the SARS-CoV-2 virus “sneaks inside human cells.” But the publication didn’t break much new ground in covering the pandemic. When it came to assessing growing evidence that Covid might have escaped from a laboratory, for example, SciAm got scooped by New York and Vanity Fa ir , publications known more for their coverage of politics and entertainment than of science.

essay about a scientific

At the same time, SciAm dramatically ramped up its social-justice coverage. The magazine would soon publish a flurry of articles with titles such as “ Modern Mathematics Confronts Its White, Patriarchal Past ” and “ The Racist Roots of Fighting Obesity .” The death of the twentieth century’s most acclaimed biologist was the hook for “ The Complicated Legacy of E. O. Wilson ,” an opinion piece arguing that Wilson’s work was “based on racist ideas,” without quoting a single line from his large published canon. At least those pieces had some connection to scientific topics, though. In 2021, SciAm published an opinion essay, “ Why the Term ‘JEDI’ Is Problematic for Describing Programs That Promote Justice, Equity, Diversity, and Inclusion .” The article’s five authors took issue with the effort by some social-justice advocates to create a cute new label while expanding the DEI acronym to include “Justice.” The Jedi knights of the Star Wars movies are “inappropriate mascots for social justice,” the authors argued, because they are “prone to (white) saviorism and toxically masculine approaches to conflict resolution (violent duels with phallic light sabers, gaslighting by means of ‘Jedi mind tricks,’ etc.).” What all this had to do with science was anyone’s guess.

Several prominent scientists took note of SciAm ’s shift. “ Scientific American is changing from a popular-science magazine into a social-justice-in-science magazine,” Jerry Coyne, a University of Chicago emeritus professor of ecology and evolution, wrote on his popular blog, “ Why Evolution Is True .” He asked why the magazine had “changed its mission from publishing decent science pieces to flawed bits of ideology.”

“The old Scientific American that I subscribed to in college was all about the science,” University of New Mexico evolutionary psychologist Geoffrey Miller told me. “It was factual reporting on new ideas and findings from physics to psychology, with a clear writing style, excellent illustrations, and no obvious political agenda.” Miller says that he noticed a gradual change about 15 years ago, and then a “woke political bias that got more flagrant and irrational” over recent years. The leading U.S. science journals, Nature and Science , and the U.K.-based New Scientist made a similar pivot, he says. By the time Trump was elected in 2016, he says, “the Scientific American editors seem to have decided that fighting conservatives was more important than reporting on science.”

Scientific American ’s increasing engagement in politics drew national attention in late 2020, when the magazine, for the first time in its 175-year history, endorsed a presidential candidate. “The evidence and the science show that Donald Trump has badly damaged the U.S. and its people,” the editors wrote. “That is why we urge you to vote for Joe Biden.” In an e-mail exchange, Scientific American editor-in-chief Helmuth said that the decision to endorse Biden was made unanimously by the magazine’s staff. “Overall, the response was very positive,” she said. Helmuth also pushed back on the idea that getting involved in political battles represented a new direction for SciAm . “We have a long and proud history of covering the social and political angles of science,” she said, noting that the magazine “has advocated for teaching evolution and not creationism since we covered the Scopes Monkey Trial.”

Scientific American wasn’t alone in endorsing a presidential candidate in 2020. Nature also endorsed Biden in that election cycle. The New England Journal of Medicine indirectly did the same, writing that “our current leaders have demonstrated that they are dangerously incompetent” and should not “keep their jobs.” Vinay Prasad, the prominent oncologist and public-health expert, recently lampooned the endorsement trend on his Substack, asking whether science journals will tell him who to vote for again in 2024. “Here is an idea! Call it crazy,” he wrote: “Why don’t scientists focus on science, and let politics decide the election?” When scientists insert themselves into politics, he added, “the only result is we are forfeiting our credibility.”

But what does it mean to “focus on science”? Many of us learned the standard model of the scientific method in high school. We understand that science attempts—not always perfectly—to shield the search for truth from political interference, religious dogmas, or personal emotions and biases. But that model of science has been under attack for half a century. The French theorist Michel Foucault argued that scientific objectivity is an illusion produced and shaped by society’s “systems of power.” Today’s woke activists challenge the legitimacy of science on various grounds: the predominance of white males in its history, the racist attitudes held by some of its pioneers, its inferiority to indigenous “ways of knowing,” and so on. Ironically, as Christopher Rufo points out in his book America’s Cultural Revolution , this postmodern ideology—which began as a critique of oppressive power structures—today empowers the most illiberal, repressive voices within academic and other institutions.

Shermer believes that the new style of science journalism “is being defined by this postmodern worldview, the idea that all facts are relative or culturally determined.” Of course, if scientific facts are just products of a particular cultural milieu, he says, “then everything is a narrative that has to reflect some political side.” Without an agreed-upon framework to separate valid from invalid claims—without science, in other words—people fall back on their hunches and in-group biases, the “my-side bias.”

Traditionally, science reporting was mostly descriptive —writers strove to explain new discoveries in a particular field. The new style of science journalism takes the form of advocacy —writers seek to nudge readers toward a politically approved opinion.

“Lately journalists have been behaving more like lawyers,” Shermer says, “marshaling evidence in favor of their own view and ignoring anything that doesn’t help their argument.” This isn’t just the case in science journalism, of course. Even before the Trump era, the mainstream press boosted stories that support left-leaning viewpoints and carefully avoided topics that might offer ammunition to the Right. Most readers understand, of course, that stories about politics are likely to be shaped by a media outlet’s ideological slant. But science is theoretically supposed to be insulated from political influence. Sadly, the new woke style of science journalism reframes factual scientific debates as ideological battles, with one side presumed to be morally superior. Not surprisingly, the crisis in science journalism is most obvious in the fields where public opinion is most polarized.

The Covid pandemic was a crisis not just for public health but for the public’s trust in our leading institutions. From Anthony Fauci on down, key public-health officials issued unsupported policy prescriptions, fudged facts, and suppressed awkward questions about the origin of the virus. A skeptical, vigorous science press could have done a lot to keep these officials honest—and the public informed. Instead, even elite science publications mostly ran cover for the establishment consensus. For example, when Stanford’s Jay Bhattacharya and two other public-health experts proposed an alternative to lockdowns in their Great Barrington Declaration , media outlets joined in Fauci’s effort to discredit and silence them.

Richard Ebright, professor of chemical biology at Rutgers University, is a longtime critic of gain-of-function research, which can make naturally occurring viruses deadlier. From the early weeks of the pandemic, he suspected that the virus had leaked from China’s Wuhan Institute of Virology. Evidence increasingly suggests that he was correct. I asked Ebright how he thought that the media had handled the lab-leak debate. He responded:

Science writers at most major news outlets and science news outlets have spent the last four years obfuscating and misrepresenting facts about the origin of the pandemic. They have done this to protect the scientists, science administrators, and the field of science—gain-of-function research on potential pandemic pathogens—that likely caused the pandemic. They have done this in part because those scientists and science administrators are their sources, . . . in part because they believe that public trust in science would be damaged by reporting the facts, and in part because the origin of the pandemic acquired a partisan political valance after early public statements by Tom Cotton, Mike Pompeo, and Donald Trump.

During the first two years of the pandemic, most mainstream media outlets barely mentioned the lab-leak debate. And when they did, they generally savaged both the idea and anyone who took it seriously. In March 2021, long after credible evidence emerged hinting at a laboratory origin for the virus, Scientific American published an article , “Lab-Leak Hypothesis Made It Harder for Scientists to Seek the Truth.” The piece compared the theory to the KGB’s disinformation campaign about the origin of HIV/AIDS and blamed lab-leak advocates for creating a poisonous climate around the issue: “The proliferation of xenophobic rhetoric has been linked to a striking increase in anti-Asian hate crimes. It has also led to a vilification of the [Wuhan Institute of Virology] and some of its Western collaborators, as well as partisan attempts to defund certain types of research (such as ‘gain of function’ research).” Today we know that the poisonous atmosphere around the lab-leak question was deliberately created by Anthony Fauci and a handful of scientists involved in dangerous research at the Wuhan lab. And the case for banning gain-of-function research has never been stronger.

One of the few science journalists who did take the lab-leak question seriously was Donald McNeil, Jr., the veteran New York Times reporter forced out of the paper in an absurd DEI panic. After leaving the Times —and like several other writers pursuing the lab-leak question—McNeil published his reporting on his own Medium blog. It is telling that, at a time when leading science publications were averse to exploring the greatest scientific mystery of our time, some of the most honest reporting on the topic was published in independent, reader-funded outlets. It’s also instructive to note that the journalist who replaced McNeil on the Covid beat at the Times, Apoorva Mandavilli, showed open hostility to investigating Covid’s origins. In 2021, she famously tweeted: “Someday we will stop talking about the lab leak theory and maybe even admit its racist roots. But alas, that day is not yet here.” It would be hard to compose a better epitaph to the credibility of mainstream science journalism.

As Shermer observed, many science journalists see their role not as neutral reporters but as advocates for noble causes. This is especially true in reporting about the climate. Many publications now have reporters on a permanent “climate beat,” and several nonprofit organizations offer grants to help fund climate coverage. Climate science is an important field, worthy of thoughtful, balanced coverage. Unfortunately, too many climate reporters seem especially prone to common fallacies, including base-rate neglect, and to hyping tenuous data.

The mainstream science press never misses an opportunity to ratchet up climate angst. No hurricane passes without articles warning of “climate disasters.” And every major wildfire seemingly generates a “climate apocalypse” headline. For example, when a cluster of Quebec wildfires smothered the eastern U.S. in smoke last summer, the New York Times called it “a season of climate extremes.” It’s likely that a warming planet will result in more wildfires and stronger hurricanes. But eager to convince the public that climate-linked disasters are rapidly trending upward, journalists tend to neglect the base rate. In the case of Quebec wildfires, for example, 2023 was a fluky outlier . During the previous eight years, Quebec wildfires burned fewer acres than average; then, there was no upward trend—and no articles discussing the paucity of fires. By the same token, according to the U.S. National Hurricane Center, a lower-than-average number of major hurricanes struck the U.S. between 2011 and 2020. But there were no headlines suggesting, say, “Calm Hurricane Seasons Cast Doubt on Climate Predictions.”

Most climate journalists wouldn’t dream of drawing attention to data that challenge the climate consensus. They see their role as alerting the public to an urgent problem that will be solved only through political change.

Similar logic applies to social issues. The social-justice paradigm rests on the notion that racism, sexism, transphobia, and other biases are so deeply embedded in our society that they can be eradicated only through constant focus on the problem. Any people or institutions that don’t participate in this process need to be singled out for criticism. In such an atmosphere, it takes a particularly brave journalist to note exceptions to the reigning orthodoxy.

This dynamic is especially intense in the debates over transgender medicine. The last decade has seen a huge surge in children claiming dissatisfaction with their gender. According to one survey , the number of children aged six to 17 diagnosed with gender dysphoria surged from roughly 15,000 to 42,000 in the years between 2017 and 2021 alone. The number of kids prescribed hormones to block puberty more than doubled. Puberty blockers and other treatments for gender dysphoria have enormous potential lifelong consequences, including sterility, sexual dysfunction, and interference with brain development. Families facing treatment decisions for youth gender dysphoria desperately need clear, objective guidance. They’re not getting it.

essay about a scientific

Instead, medical organizations and media outlets typically describe experimental hormone treatments and surgeries as routine, and even “lifesaving,” when, in fact, their benefits remain contested, while their risks are enormous. In a series of articles, the Manhattan Institute’s Leor Sapir has documented how trans advocates enforce this appearance of consensus among U.S. scientists, medical experts, and many journalists. Through social-media campaigns and other tools, these activists have forced conferences to drop leading scientists, gotten journals to withdraw scientific papers after publication, and interfered with the distribution of Abigail Shrier’s 2020 book Irreversible Damage , which challenges the wisdom of “gender-affirming care” for adolescent girls. While skeptics are cowed into silence, Sapir concludes, those who advocate fast-tracking children for radical gender therapy “will go down in history as responsible for one of the worst medical scandals in U.S. history.”

In such an overheated environment, it would be helpful to have a journalistic outlet advocating a sober, evidence-based approach. In an earlier era, Scientific American might have been that voice. Unfortunately, SciAm today downplays messy debates about gender therapies, while offering sunny platitudes about the “safety and efficacy” of hormone treatments for prepubescent patients. For example, in a 2023 article , “What Are Puberty Blockers, and How Do They Work?,” the magazine repeats the unsubstantiated claim that such treatments are crucial to preventing suicide among gender-dysphoric children. “These medications are well studied and have been used safely since the late 1980s to pause puberty in adolescents with gender dysphoria,” SciAm states.

The independent journalist Jesse Singal, a longtime critic of slipshod science reporting, demolishes these misleading claims in a Substack post . In fact, the use of puberty blockers to treat gender dysphoria is a new and barely researched phenomenon, he notes: “[W]e have close to zero studies that have tracked gender dysphoric kids who went on blockers over significant lengths of time to see how they have fared.” Singal finds it especially alarming to see a leading science magazine obscure the uncertainty surrounding these treatments. “I believe that this will go down as a major journalistic blunder that will be looked back upon with embarrassment and regret,” he writes.

Fortunately, glimmers of light are shining through on the gender-care controversy. The New York Times has lately begun publishing more balanced articles on the matter, much to the anger of activists. And various European countries have started reassessing and limiting youth hormone treatments. England’s National Health Service recently commissioned the respected pediatrician Hilary Cass to conduct a sweeping review of the evidence supporting youth gender medicine. Her nearly 400-page report is a bombshell, finding that evidence supporting hormone interventions for children is “weak,” while the long-term risks of such treatments have been inadequately studied. “For most young people,” the report concludes, “a medical pathway will not be the best way to manage their gender-related distress.” In April, the NHS announced that it will no longer routinely prescribe puberty blocking drugs to children.

Scientific American has yet to offer an even-handed review of the new scientific skepticism toward aggressive gender medicine. Instead, in February, the magazine published an opinion column, “ Pseudoscience Has Long Been Used to Oppress Transgender People .” Shockingly, it argues for even less medical caution in dispensing radical treatments. The authors approvingly note that “many trans activists today call for diminishing the role of medical authority altogether in gatekeeping access to trans health care,” arguing that patients should have “access to hormones and surgery on demand.” And, in an implicit warning to anyone who might question these claims and goals, the article compares today’s skeptics of aggressive gender medicine to Nazi eugenicists and book burners. Shortly after the Cass report’s release, SciAm published an interview with two activists who argue that scientists questioning trans orthodoxy are conducting “ epistemological violence .”

There’s nothing wrong with vigorous debate over scientific questions. In fact, in both science and journalism, adversarial argumentation is a vital tool in testing claims and getting to the truth. “A bad idea can hover in the ether of a culture if there is no norm for speaking out,” Shermer says. Where some trans activists cross the line is in trying to derail debate by shaming and excluding anyone who challenges the activists’ manufactured consensus.

Such intimidation has helped enforce other scientific taboos. Anthony Fauci called the scientists behind the Great Barrington Declaration “ fringe epidemiologists ” and successfully lobbied to censor their arguments on social media. Climate scientists who diverge from the mainstream consensus struggle to get their research funded or published. The claim that implicit racial bias unconsciously influences our minds has been debunked time and again—but leading science magazines keep asserting it.

Scientists and journalists aren’t known for being shrinking violets. What makes them tolerate this enforced conformity? The intimidation described above is one factor. Academia and journalism are both notoriously insecure fields; a single accusation of racism or anti-trans bias can be a career ender. In many organizations, this gives the youngest, most radical members of the community disproportionate power to set ideological agendas.

“Scientists, science publishers, and science journalists simply haven’t learned how to say no to emotionally unhinged activists,” evolutionary psychologist Miller says. “They’re prone to emotional blackmail, and they tend to be very naive about the political goals of activists who claim that scientific finding X or Y will ‘impose harm’ on some group.”

But scientists may also have what they perceive to be positive motives to self-censor. A fascinating recent paper concludes: “Prosocial motives underlie scientific censorship by scientists.” The authors include a who’s who of heterodox thinkers, including Miller, Manhattan Institute fellow Glenn Loury, Pamela Paresky, John McWhorter, Steven Pinker, and Wilfred Reilly. “Our analysis suggests that scientific censorship is often driven by scientists, who are primarily motivated by self-protection, benevolence toward peer scholars, and prosocial concerns for the well-being of human social groups,” they write.

Whether motivated by good intentions, conformity, or fear of ostracization, scientific censorship undermines both the scientific process and public trust. The authors of the “prosocial motives” paper point to “at least one obvious cost of scientific censorship: the suppression of accurate information.” When scientists claim to represent a consensus about ideas that remain in dispute—or avoid certain topics entirely—those decisions filter down through the journalistic food chain. Findings that support the social-justice worldview get amplified in the media, while disapproved topics are excoriated as disinformation. Not only do scientists lose the opportunity to form a clearer picture of the world; the public does, too. At the same time, the public notices when claims made by health officials and other experts prove to be based more on politics than on science. A new Pew Research poll finds that the percentage of Americans who say that they have a “great deal” of trust in scientists has fallen from 39 percent in 2020 to 23 percent today.

“Whenever research can help inform policy decisions, it’s important for scientists and science publications to share what we know and how we know it,” Scientific American editor Helmuth says. “This is especially true as misinformation and disinformation are spreading so widely.” That would be an excellent mission statement for a serious science publication. We live in an era when scientific claims underpin huge swaths of public policy, from Covid to climate to health care for vulnerable youths. It has never been more vital to subject those claims to rigorous debate.

Unfortunately, progressive activists today begin with their preferred policy outcomes or ideological conclusions and then try to force scientists and journalists to fall in line. Their worldview insists that, rather than challenging the progressive orthodoxy, science must serve as its handmaiden. This pre-Enlightenment style of thinking used to hold sway only in radical political subcultures and arcane corners of academia. Today it is reflected even in our leading institutions and science publications. Without a return to the core principles of science—and the broader tradition of fact-based discourse and debate—our society risks drifting onto the rocks of irrationality.

James B. Meigs is a senior fellow at the Manhattan Institute and a contributing editor of City Journal .

Top Photo: During the pandemic, Scientific American published an article discounting the theory that Covid-19 had leaked from China’s Wuhan Institute of Virology, comparing it to the KGB’s propaganda campaign about the origin of HIV/AIDS. (Yin Gang Xinhua/eyevine/Redux)

City Journal is a publication of the Manhattan Institute for Policy Research (MI), a leading free-market think tank. Are you interested in supporting the magazine? As a 501(c)(3) nonprofit, donations in support of MI and City Journal are fully tax-deductible as provided by law (EIN #13-2912529).

essay about a scientific

Further Reading

Copyright © 2024 Manhattan Institute for Policy Research, Inc. All rights reserved.

  • Eye on the News
  • From the Magazine
  • Books and Culture
  • Privacy Policy
  • Terms of Use

EIN #13-2912529

COMMENTS

  1. PDF Tutorial Essays for Science Subjects

    read articles about science in newspapers and magazines, as well as popular science books. It's important that you realize that there is a distinction between writing for non-specialists and the style that you will need for your essays. In explaining scientific discoveries, popular science writers and journalists want to:

  2. Scientific Writing Made Easy: A Step‐by‐Step Guide to Undergraduate

    This guide was inspired by Joshua Schimel's Writing Science: How to Write Papers that Get Cited and Proposals that Get Funded—an excellent book about scientific writing for graduate students and professional scientists—but designed to address undergraduate students. While the guide was written by a group of ecologists and evolutionary ...

  3. Our top essays by scientists in 2021

    Our top essays by scientists in 2021. 20 Dec 2021. 10:50 AM ET. By Katie Langin. Share: Robert Neubecker. When I emailed Phil De Luna in March to ask whether he was OK with titling the essay he'd written for Science " After falling in love, I reimagined my career path—for the better ," I wasn't sure how he'd react to the "love ...

  4. How to Write a Science Essay

    A science essay is an academic paper focusing on a scientific topic from physics, chemistry, biology, or any other scientific field. Science essays are mostly expository. That is, they require you to explain your chosen topic in detail. However, they can also be descriptive and exploratory.

  5. Essays About Science: Top 12 Examples And Prompts

    3. Reflections from a Nobel winner: Scientists need time to make discoveries by Donna Strickland. "We must give scientists the opportunity through funding and time to pursue curiosity-based, long-term, basic-science research. Work that does not have direct ramifications for industry or our economy is also worthy.

  6. How to Write a Scientific Essay

    Take concise notes while reading, focusing on information relevant to the essay. Identify the most crucial information and examples that support the argument. Begin writing the essay, considering starting with the middle sections for clarity. Circle back to the introduction and conclusion once the main body is outlined.

  7. How to successfully write a scientific essay

    In conclusion, writing a scientific essay differs from writing other types of papers. A scientific essay requires you to produce an article which has all the information and facts about the subject matter and it ought to be to the point. Nonetheless, the scientific essay formats similar to the format of any other essay: introduction, body, and ...

  8. PDF WRITING A SCIENTIFIC ESSAY

    of scientific work . 2. State. where your work could be extended or improved . 1. Clear. Citation . 2. Complete. Reference list . 3. Accepted . Style . 4. Accurately . reproduced . Acknowledge . work of other researchers so that readers can see how your point of view developed

  9. Guide: Writing the Scientific Paper

    The scientific paper has developed over the past three centuries into a tool to communicate the results of scientific inquiry. The main audience for scientific papers is extremely specialized. The purpose of these papers is twofold: to present information so that it is easy to retrieve, and to present enough information that the reader can ...

  10. The Science Essay

    The science essay uses science to think about the human condition; it uses humanistic thinking to reflect on the possibilities and limits of science and technology. In this class we read and practice writing science essays of varied lengths and purposes. We will read a wide variety of science essays, ranging across disciplines, both to learn more about this genre and to inspire your own writing.

  11. Writing an Introduction for a Scientific Paper

    Dr. Michelle Harris, Dr. Janet Batzli,Biocore. This section provides guidelines on how to construct a solid introduction to a scientific paper including background information, study question, biological rationale, hypothesis, and general approach. If the Introduction is done well, there should be no question in the reader's mind why and on ...

  12. Winning Essays

    Entangled in a Quantum Future. 1st Place Winner, Yale Scientific Magazine National Essay Competition 2019. Kelvin Kim. Bergen Catholic High School, Oradell, NJ. The rate of discovery in science has accelerated dramatically since the 20th century. This should not be surprising since our knowledge base doubles approximately every 13 months.

  13. How to Write a Scientific Essay • Oxford Learning College

    How to Write a Scientific Essay. When writing any essay it's important to always keep the end goal in mind. You want to produce a document that is detailed, factual, about the subject matter and most importantly to the point. Writing scientific essays will always be slightly different to when you write an essay for say English Literature. You ...

  14. What is scientific writing?

    Scientific writing is a technical form of writing that is designed to communicate scientific information to other scientists. Depending on the specific scientific genre—a journal article, a scientific poster, or a research proposal, for example—some aspects of the writing may change, such as its purpose, audience, or organization.Many aspects of scientific writing, however, vary little ...

  15. Essay on Science: Sample for Students in 100,200 Words

    Sample Essay On Science in 100 words. Science, the bedrock of human progress, unveils the mysteries of our universe through empirical investigation and reason. Its profound impact permeates every facet of modern life. In medicine, it saves countless lives with breakthroughs in treatments and vaccines. Technology, a child of science, empowers ...

  16. Scientific Method: Role and Importance

    The scientific method is a problem-solving strategy that is at the heart of biology and other sciences. There are five steps included in the scientific method that is making an observation, asking a question, forming a hypothesis or an explanation that could be tested, and predicting the test. After that, in the feedback step that is iterating ...

  17. Science Essay Examples

    Scientific Essay Examples. Science is the systematic investigation of the surrounding world through observation and experiments and the process of formulating judgments and hypotheses based on obtained evidence. Given that science can be directed at virtually any question that humans find relevant, so can be an essay on science - starting ...

  18. Top 15 Science Essay Examples for Students

    Structure of a Science Essay. Science essays are a crucial part of many subjects, and learning to structure them effectively is essential for achieving academic success. Letâ s explore scientific essay structure. Introduction. The introduction of a science essay should introduce the topic and provide some context for the reader.

  19. Essay on Scientific Discoveries & Inventions

    Here are the five qualities a perfect essay should have:-. Focus: All of your writing should come under one single topic. No matter how vast your essay is, it should always revolve around the topic of the essay. Avoid unnecessary details. Development: Every paragraph of your essay should centre the topic of your essay.

  20. Science

    Over a weekend in 1995, a small group gathered in Ohio to unleash the power of the internet by making it navigable. Monica Westin. More. Science Essays from Aeon. World-leading scientists and science writers explore topics from theories of evolution to theories of consciousness, quantum physics to deep time, chemistry to cosmology.

  21. Essay on Science for Students and Children

    Get the huge list of more than 500 Essay Topics and Ideas. Science as a Subject. In class 1 only a student has Science as a subject. This only tells us about the importance of Science. Science taught us about Our Solar System. The Solar System consists of 9 planets and the Sun. Most Noteworthy was that it also tells us about the origin of our ...

  22. Research articles

    scientific reports. research articles. Research articles. Filter By: Article Type. All. All; Article (199747) Conference Proceeding (56) ... Calls for Papers Guide to referees ...

  23. Essay on Science in English: Check 200, 300 & 500 Words Essay

    These science essays can be used for essay writing, debate, and other related activities at your institution or school. Essay On Science (200 words) Science entails a thorough examination of the behavior of the physical and natural world. Research, experimentation, and observation are used in the study. The scientific disciplines are diverse.

  24. Illuminating 'the ugly side of science': fresh incentives for reporting

    A 2012 study showed that, from 1990 to 2007, there was a 22% increase in positive conclusions in papers; by 2007, 85% of papers published had positive results 1. "People fail to report [negative ...

  25. Concerns about data integrity across 263 papers by one author

    INTRODUCTION. The integrity of clinical trials underpins the guidelines that inform clinical practice. However, it is increasingly evident that a large proportion of papers reporting on clinical trials are not trustworthy [1].Currently, the retrospective identification of untrustworthy papers remains the best method to prevent further damage from untrustworthy research.

  26. A wave of retractions is shaking physics

    In today's scientific enterprise, scientists perform research and submit the work to editors. The editors assign anonymous referees to review the work, and if the paper passes review, the work ...

  27. Two decades of studies suggest health benefits ...

    To deepen understanding of the potential benefits of plant-based diets, Capodici and colleagues reviewed 48 papers published between January 2000 and June 2023 that themselves compiled evidence ...

  28. Geophysical Research Letters Call for Papers

    Geophysical Research Letters is a gold open access journal that publishes high-impact, innovative, and timely communications-length articles on major advances spanning all of the major geoscience disciplines. Papers should have broad and immediate implications meriting rapid decisions and high visibility.

  29. College of Computing and Data Science

    Andreas Kuster, a PhD student from Nanyang Technological University's College of Computing and Data Science (CCDS), has been named one of the three winners of the 53 rd St. Gallen Symposium's essay award. His essay, titled "Beyond the Noise: Innovating Information Verification in the Digital Age", stood out among over 700 submissions from all ...

  30. Unscientific American

    Michael Shermer got his first clue that things were changing at Scientific American in late 2018. The author had been writing his "Skeptic" column for the magazine since 2001. His monthly essays, aimed at an audience of both scientists and laymen, championed the scientific method, defended the need for evidence-based debate, and explored ...